Найти частное решение линейного неоднородного уравнения второго порядка, удовлетворяющее заданным начальным условиям.
y″ − 4·y′ + 4·y = e³ˣ y(0) = 0; y′(0) = 1
Решение дифференциального уравнения ищем в виде: y = y₀ + y₁, где
y₀ — общее решение однородного уравнения,
y₁ — одно из частных решений неоднородного уравнения.
Характеристический многочлен k² − 4·k + 4 = (k − 2)² = 0 имеет действительный двухкратный корень k₁ = k₂ = 2
Общее решение однородного уравнения y₀ = (C₁·x + C₂)·e²ˣ.
C₁, C₂ — постоянные интегрирования.
Одно из частных решений неоднородного уравнения найдём методом неопределённых коэффициентов Лагранжа.
Пусть y₁ = A·e³ˣ. Тогда y₁′ = 3·A·e³ˣ = 3·y₁, y₁″ = 3²·y₁ = 9·y₁.
y₁″ − 4·y₁′ + 4·y₁ = (9 − 3·3 + 4)·y₁ = y₁ = A·e³ˣ, откуда A = 1.
Тогда y₁ = e³ˣ, y = y₀ + y₁ = (C₁·x + C₂)·e²ˣ + e³ˣ
Постоянные интегрирования C₁, C₂ найдём из начальных условий.
При x = 0 y = C₂ + 1 = 0, откуда C₂ = −1.
Тогда y = (C₁·x − 1)·e²ˣ + e³ˣ
Дифференцируем: y′ = (2·C₁·x + C₁ − 2)·e²ˣ + 3·e³ˣ
При x = 0 y′ = C₁ − 2 + 3 = C₁ + 1 = 1, откуда C₁ = 0
Частное решение неоднородного дифференциального уравнения при заданных начальных условиях:
y = e³ˣ − e²ˣ
Если Вам нужно грамотно и без посредников выполнить контрольную или курсовую работу — обращайтесь. Список предметов и номер телефона указаны у на моём сайте http://integral-ua.narod.ru/