25 апреля теперь уже далекого 1953 г. журнал Nature опубликовал небольшое письмо молодых и никому неизвестных Ф.Крика и Дж.Уотсона редактору журнала, которое начиналось словами: «Мы хотели бы предложить свои соображения по поводу структуры соли ДНК. Эта структура имеет новые свойства, которые представляют большой биологический интерес». Статья содержала около 900 слов, но – и это не преувеличение – каждое из них было на вес золота.
«Ершистая молодежь» посмела выступить против нобелевского лауреата Лайнуса Полинга, автора знаменитой альфа-спирали белков. Полинг буквально накануне опубликовал статью, согласно которой ДНК представляла собой трехцепочечную спиральную структуру, наподобие девичьей косы. Тогда никто не знал, что у Полинга был просто недостаточно очищенный материал. Но и Полинг оказался отчасти прав – сейчас трехцепочечность некоторых участков наших генов хорошо известна. Это свойство ДНК даже пытались одно время использовать в борьбе с раком, выключая с помощью олигонуклеотидов те или иные раковые гены (онкогены).
Биологии нуклеиновых кислот долго не везло. Достаточно сказать, что первую нобелевскую премию за открытие строения нуклеотидов немец А.Коссель получил еще в 1910 г. А знаменитая реакция Фельгена для окрашивания ДНК была предложена накануне Первой мировой войны и усовершенствована в 1920-е гг. Тогда и могла бы начаться новая эра биологии, однако...
Однако биологи были уверены, что «монотонная» ДНК с ее только четырьмя различающимися основаниями просто не могла нести генетическую информацию о миллионах самых разнообразных белков. И хотя уже применялась азбука Морзе с тремя кодирующими элементами, менталитет исследователей еще не достиг уровня информационной эры с ее двоичной системой записи («0» и «1») любой информации.
Лишь к началу 1950-х гг. отдельные ученые стали обращать внимание на ДНК, роль которой в передаче наследственных признаков у микроорганизмов установил в 1943 г. Освальд Эйвери. Результатам Эйвери поверил Сальвадор Лурия, который вместе с Максом Дельбрюком организовал неподалеку от Нью-Йорка лабораторию на биостанции в местечке Колд-Спринг Харбор.
Заметим в скобках, что физик М.Дельбрюк был учеником Н.В. Тимофеева-Ресовского в биологии и соавтором их совместной с К.Циммером знаменитой статьи, посвященной определению размеров гена. Лурия с Дельбрюком изучали жизненный цикл бактериофагов – вирусов микроорганизмов, в результате чего и пришли к предположениям о биологической роли ДНК. Лурия послал своего аспиранта Джеймса Уотсона в Кавендишскую лабораторию в Кембридже, где Морис Уилкинс и Розалинд Франклин исследовали строение ДНК с помощью рентгена (англичане лидировали в рентгеноструктурном анализе биомолекул).
В лаборатории Уилкинса работал также еще довольно молодой физик Фрэнсис Крик, известный в узких лабораторных кругах своим научным скепсисом: для него просто не существовало никаких авторитетов, чем он и заработал себе репутацию скандалиста. Статью Полинга в лабораторию принес его сын, который помог, кстати, Уотсону и Крику уяснить роль попарного комплементарного соединения азотистых оснований. Статья стала последней каплей перед озарением, или пониманием... тем, что оформилось в открытие молодых ученых.
Научное сообщество, однако, не сразу признало их открытие. Достаточно сказать, что сначала Нобелевскую премию за работы в области ДНК «судьи» из Стокгольма присудили в 1959 г. известным американским биохимикам Северо Очоа и Артуру Корнбергу. Очоа был первым (1955), кто сумел синтезировать рибонуклеиновую кислоту (РНК). Корнберг же получил премию за синтез ДНК в пробирке (1956).
В 1962 г. настал черед Крика, Уотсона и Уилкинса. Р.Франклин к тому времени уже умерла от рака в возрасте 37 лет, иначе это был бы единственный случай в истории Нобелевских премий, когда награду вручили бы четверым, хотя это и не допускается уставом. Вклад Франклин в развитие рентгеноструктурного анализа ДНК был просто неоценим.
После открытия Уотсона и Крика важнейшей проблемой стало выявление соответствия между первичными структурами ДНК и белков. Поскольку в составе белков обнаруживается 20 аминокислот, а нуклеиновых оснований всего 4, то для записи информации о последовательности аминокислот в полинуклеотидах необходимо не менее трех оснований. На основании таких общих рассуждений варианты «трехбуквенных» генетических кодов предложили физик Г.Гамов и биолог А.Нейфах. Однако их гипотезы были чисто умозрительными и не вызвали большого отклика среди ученых.
Трехбуквенный генетический код к 1964 г. расшифровал Ф.Крик. Вряд ли он тогда предполагал, что в обозримом будущем станет возможной расшифровка генома человека. Эта задача долгое время казалась неразрешимой. Однако два открытия позволили сдвинуть проблему с места.
В 1970 г. не известные широкой научной общественности Г.Темин и Д.Балтимор опубликовали в Nature статьи, посвященные обратной транскриптазе (ОТ) – ферменту РНК-содержащих, в том числе раковых, вирусов, которые синтезируют ДНК на матрице РНК, т.е.
Читать далее...