Явление квантовой запутанности, названное Альбертом Эйнштейном "призрачным взаимодействием на расстоянии", сохраняется даже при очень высоком ускорении движения. Этот факт установили во время экспериментов ученые-физики из Венского университета и Института квантовой оптики и квантовой информатики австрийской Академии наук. В этом эксперименте источник запутанных фотонов был помещен в контейнер, который с высокой скоростью перемещался по вертикальной шахте и вращался на центрифуге, действующее на него при этом ускорение составляло 30 g. Данный эксперимент был проведен для углубления понимания основных принципов квантовой механики, а результаты этого эксперимента помогут найти пути применения квантовых технологий в космосе.
Общая теория относительности Альберта Эйнштейна и теория квантовой механики являются двумя фундаментальными направлениями современной физики. Создание обобщенной "теории всего сущего" требует объединения вышеупомянутых двух теорий, но на сегодняшний день этого достичь не удалось, ведь явления, относящиеся к каждой из теорий, принципиально не могут наблюдаться в одно и тоже время.
Одним из ключевых явлений квантовой механики является явление квантовой запутанности. Заключается оно в том, что изменение квантового состояния одной из запутанных частиц, фотонов света, к примеру, моментально отражается на состоянии второй частицы, невзирая на разделяющее их расстояние, которое может быть сколь угодно большим. Ускорение во время движения, которое также использовалось в проведенном эксперименте, лучше всего описывается законами традиционной механики. И этот эксперимент стал первым в истории экспериментом, в котором на фотоны света одновременно оказывали воздействие явления, относящиеся к разным теориям.
Результаты эксперимента показывают, что явление квантовой запутанности "выживает", т.е. не наблюдается деградации качества квантовой запутанности, при ускорении в 30 g, ускорении, в 30 раз превышающем ускорение свободного падения на Земле. "Такие эксперименты должны нам помочь в будущем объединить теорию относительности и квантовую механику" - рассказывает Руперт Арсин (Rupert Ursin), глава исследовательской группы, - "Физическая выносливость запутанности крайне важна для использования квантовых технологий в космосе, ведь космические аппараты и корабли очень часто двигаются с большим ускорением и испытывают на себе массу других видов воздействий".
Первой частью эксперимента стал спуск контейнера с источником запутанных фотонов с высоты 12 метров, что позволило поместить источник в условия псевдо-невесомости. Во второй части эксперимента контейнер был установлен на центрифуге, обеспечивающей постоянную перегрузку с силой до 30 g. Для сравнения, самые большие перегрузки, возникающие при катании на американских горках, достигают значения 6 g.
Датчики, установленные в контейнере, контролировали уровень качества квантовой запутанности фотонов. Анализируя все собранные данные, ученые смогли определить значение верхнего предела ускорения, после которого ускорение оказывало влияние на квантовую запутанность. Однако, полученные данные об изменениях качества запутанности лишь незначительно превышали уровень собственных шумов измерительных устройств, что не позволяет считать достоверными результаты проведенного эксперимента.
"Следующим нашим шагом станут работы, направленные на стабилизацию работы нашей установки. Это, в свою очередь, позволит понизить уровень собственных iшумов и других помех, увеличить скорость вращения и получить большее значение ускорения движения" - рассказывает Руперт Арсин, - "И мы надеемся, что после всего этого нам удастся впервые зарегистрировать эффекты влияния явлений обычной физики на явления из области квантовой механики".
Напомним нашим читателям, что темная материя - это гипотетическая субстанция, существование которой должно объяснить некоторые эффекты и процессы, наблюдаемые учеными в окружающем нас мире. Согласно имеющейся теории, количество темной материи во Вселенной в пять раз превышает количество обычной материи, что было косвенно подтверждено результатами некоторых астрономических наблюдений. Сейчас несколько научных групп проводят эксперименты, в которых при помощи сверхвысокочувствительных датчиков производятся поиски частиц темной материи. Одним из таких экспериментов является эксперимент XENON, оборудование которого имеет самый большой и самый чувствительный датчик XENON1T, успевший проработать уже в течение 30 дней, снабжая ученых научными данными.
Отметим, что предыдущий эксперимент XENON100, в датчике которого использовалось 100 литров жидкого ксенона, за пять лет своей работы так и не принес желаемых результатов. Поэтому ученые построили еще больший и более чувствительный датчик XENON1T, суммарная масса которого составляет 3200 килограмм и внутри которого находится 1000 литров жидкого ксенона. Датчик XENON1T является самым большим ксеноновым датчиком на сегодняшний день, он обеспечивает высокую чувствительность при очень низком уровне шумов, и при его помощи ученые надеются впервые "поймать за руку" неуловимые частицы темной материи.
В организации XENON Collaboration состоит 135 ученых из США, Германии, Италии, Швейцарии, Португалии, Франции, Нидерландов, Израиля, Швеции и Объединенных Арабских Эмиратов. Строительство нового датчика велось в подземной лаборатории LNGS с осени 2016 года. Датчик представляет собой огромный бак, заполненный для защиты от влияния внешнего мира сверхчистой водой, а расположенное рядом трехэтажное сооружение заполнено оборудованием и компьютерами, управляющими работой датчика.
Главный детектор датчика XENON1T носит название LXeTPC (liquid xenon time projection chamber) и он располагается внутри криостата, находящегося в центре бака с водой. Криостат поддерживает температуру детектора в -95 градусов Цельсии, а слой теплоизоляции не позволяет ему заморозить окружающую воду. Тем не менее, даже всех этих защитных мер не совсем достаточно для того, чтобы оградить детектор от естественной радиации. Подавление ее шумов выполняется при помощи специализированного фильтрующего оборудования и программного обеспечения, что позволило достигнуть рекордного уровня радиационной "тишины", необходимой для того, чтобы услышать очень слабый "голос" частиц темной материи.
Взаимодействия WIMP-частиц с атомами жидкого ксенона приводят к возникновению слабых вспышек света, которые регистрируются, обмеряются и изучаются учеными. Получаемая пространственная информация позволяет выделить только те события, которые происходят в центральной области детектора, там, где распределение плотности и температуры ксенона имеют максимальную однородность.
За 30-дневный период работы датчика XENON1T ученым не удалось зарегистрировать никаких событий, имеющих отношение к WIMP-частицам темной материи. Тем не менее, полученные данные позволили оценить чувствительность датчика, которая превосходит чувствительность датчиков любых других экспериментов, что позволяет расширить границы диапазона поисков. "WIMP-частицы еще не были обнаружены, да и мы не ожидали этого так скоро" - рассказывает Елена Април (Elena Aprile), профессор из Колумбийского университета, - "Лучшие новости заключаются в том, что датчик продолжает выдавать высокоточные данные, которые в ближайшем времени позволят нам проверить несколько гипотез, касающихся WIMP-частиц, имеющих определенную массу и энергию. И, можно сказать, что с началом работы датчика XENON1T началась новая фаза охоты на темную материю".
В течение последних нескольких лет единственным способом, при помощи которого можно было контролировать уровень своей физической активности, было ношение миниатюрного устройства, которое получило название "фитнесс-трекер". Однако, исследователи из Лаборатории информатики и искусственного интеллекта (Computer Science and Artificial Intelligence Laboratory) Массачусетского технологического института придумали новый способ контроля, не требующий ношения каких-либо электронных устройств и делающий это при помощи невидимых радиосигналов.
Исследователи из Массачусетса разработали новое устройство под названием WiGait, которое внешне очень напоминает обычный Wi-Fi-роутер, повешенный на стену. Это устройство излучает радиосигнал, мощностью в сто раз ниже уровня радиосигнала, излучаемого мобильным телефоном. Улавливая отраженный от тела человека сигнал, устройство WiGait может определить скорость движения человека и даже распознать некоторые его движения.
Испытания технологии WiGait показали, что это устройство способно измерить скорость и длину шага с высокой точностью в 85 процентах случаев, оно также может отслеживать перемещения нескольких людей в одно и то же время. И это позволит создать систему контроля передвижений, которая, при помощи хранящихся в базе данных, сможет идентифицировать по особенностям походки каждого конкретного человека.
Но не создание системы тотальной слежки и контроля было основной целью исследователей из Массачусетса. Известно, что походка человека является одним из индикаторов состояния здоровья. Такие заболевания, как болезнь Паркинсона, рассеянный склероз и болезнь Альцгеймера оказывают на походку человека очень сильное влияние, делая ее менее координированной и менее энергичной.
Исследователи предлагают использовать устройства WiGait в жилых помещениях, в учреждениях социальной защиты, в санаториях и медицинских учреждениях для контроля перемещения пожилых жильцов, посетителей или пациентов. Собираемые системой данные позволят отследить изменения походки человека в течение длительного времени, что может указывать косвенным образом на эффективность лечения и принятых профилактических мер.
Практическое использование системы WiGait не требует ношения человеком какого-либо электронного устройства, которое необходимо заряжать каждый день и синхронизировать с мобильным телефоном или компьютером. Ну а "невидимая" природа осуществляемого системой контроля позволит сделать ее дополнением к существующим системам контроля и безопасности.
Согласно существующим теориям, звезды и сопровождающие их планеты зарождаются внутри вращающихся дискообразных облаков космической пыли и газа, которые постепенно сжимаются под воздействием своей же гравитации. К сожалению, такие дискообразные облака очень тяжело обнаружить при помощи существующих астрономических инструментов, они, по космическим меркам, являются относительно небольшими и холодными. Однако, возможности телескопа ALMA (Atacama Large Millimeter/submillimeter Array), расположенного в пустыне Атакама в Чили, уже позволяют произвести поиски и подробное изучение процессов, происходящих внутри таких дисков. Не так давно ученые опубликовали один из первых снимков протозвездного дискообразного облака под названием HH212, и, оказывается, это облако очень похоже на своего рода космический "гамбургер".
Под воздействием собственной гравитации газ и пыль этого облака медленно падают в район его центра, где они служат "кормом" для формирующейся звезды. Эта звезда по космическим меркам времени является еще "эмбрионом", ее возраст составляет всего 40 тысяч лет. Дискообразное облако имеет ширину, равную 60 расстояниям от Земли до Солнца, его внутренний слой более темен и холоден, чем слои, находящиеся сверху и снизу, что делает его весьма похожим на гамбургер.
Данный снимок является первым снимком, когда астрономам удалось увидеть центральную холодную область протозвездного диска. "Этот факт, в свою очередь, идет вразрез с некоторыми из имеющихся теорий относительно процессов формирования звезд" - рассказывает Чин-Фей Ли (Chin-Fei Lee), научный сотрудник Института астрономии и астрофизики, Тайвань.
Ученые считают, что такая многослойная структура протозвездного диска является результатом процессов распределения тепла внутри облака. Согласно построенной математической модели, поверхность диска HH212 всегда будет более теплой из-за нагревания ее находящейся внутри протозвездой и перемешивания материи ветрами, возникающими внутри облака. "Самым захватывающим является то, что только в последнее время мы получили возможность обнаружения и тщательного изучения протозвездных дисков" - рассказывает Кен Райс (Ken Rice), астрофизик из Королевской Обсерватории в Эдинбурге, - "И теперь нам становятся понятными некоторые неочевидные особенности процессов, происходящих внутри таких дисков".
Несмотря на то, что диск HH212 и находящаяся внутри него протозвезда еще очень и очень "молоды", внутри этого диска уже успели образоваться частицы материи, размером от одного миллиметра до одного сантиметра, из которых в будущем сформируются планеты и астероиды. А в ближайшем времени ученые-астрономы планируют провести дополнительные наблюдения, в ходе которых они собираются увидеть, как потоки материи циркулируют внутри облака и какие из них направляются в его центр для "подкормки" растущей протозвезды. Кроме этого, астрономы собираются найти уплотнения, которые представляют собой зародыши будущих планет, и которые, согласно имеющимся теориям, должны появляться именно на этом этапе формирования новых звездных систем.
В настоящее время специалисты исследовательской группы компании Google, занимающейся практической реализацией технологий квантовых вычислений, уже имеют в своем активе опытный образец квантового процессора с шестью кубитами, организованными в две группы по три кубита. Согласно информации, предоставленной Джоном Мартинисом (John Martinis), главой вышеупомянутой группы, уже к концу этого года они собираются построить новое квантовое устройство, возможности которого уже перешагнут так называемый барьер "квантового превосходства", барьер, после которого производительность квантовой системы на некоторых специализированных задачах будет находиться далеко за пределами возможностей любого из существующих суперкомпьютеров.
Опытный шестикубитный квантовый чип стал своего рода полигоном для отработки технологий изготовления кубитов, организации связей между ними и интерфейсов между квантовым и окружающим миром обычной физики. Разработки всех этих технологий были начаты около двух лет назад и сейчас в распоряжении специалистов компании имеются "правильные" методы изготовления кубитов, их установки друг относительно друга и многое другое. "Нам еще предстоит проделать некоторый объем работы, в частности в области расположения кубитов так, как они будут располагаться на чипах крупномасштабных квантовых систем" - рассказывает Джон Мартинис, - "Но все разработанные нами процессы работают должным образом и мы готовы к совершению резкого качественного скачка. Этим скачком станет создание систем с 30-50 кубитами, работы над которыми уже ведутся в настоящее время".
Сейчас исследовательская группа, в состав которой входит 25 человек, проводит заключительные проверки некоторых конструктивных особенностей будущей квантовой вычислительной системы, в частности, линейного расположения цепочек кубитов, из которых потом будет собрана их двухмерная матрица. И, согласно планам, эта система должна обрести законченный вид не позднее конца этого года.
Согласно некоторым теориям из области квантовых вычислений системы, которые смогут перешагнуть барьер квантового превосходства, должны содержать минимум 50 кубитов. А при большем количестве кубитов такие системы уже будут способны к решению столь сложных задач, которые невозможно решить в приемлемые сроки традиционными системами любой производительности. С этой точки зрения будущий процессор компании Google можно рассматривать как демонстрационную систему, но с другой точки зрения, этот процессор станет огромным шагом к появлению реальных универсальных квантовых компьютеров, которые смогут стать именно тем средством, которое обеспечит рывок вперед технологического развития человечества в целом.
Во время проведения тестовых запусков новая российская противокорабельная гиперзвуковая ракета "Циркон" разогналась в воздухе до скорости 8 Махов, скорости, в восемь раз превышающей скорость звука (~10 тысяч километров в час, 6200 миль в час). Запуск таких ракет производится при помощи универсальной платформы 3C14 "Агат", которая так же используется для запусков ракет "Оникс" и "Калибр". Когда ракета "Циркон" будет готова к принятию на вооружение, первыми ее получат тяжелые атомные ракетные крейсера "Петр Великий" и "Адмирал Нахимов".
В базовом исполнении за счет использования нового вида топлива дальность полета ракеты "Циркон" составляет около 1000 километров, однако, в экспортном варианте эта дальность будет ограничена 400-ми километрами. Номинальная крейсерская скорость полета ракеты "Циркон" составит от 4 до 6 Махов.
Отметим, что Россия является третьей в мире страной, ведущей разработки гиперзвуковых аппаратов военного назначения. Подобные разработки, естественно, ведутся в США и на страницах нашего сайта мы неоднократно рассказывали о проектах под названием X-51 и HTV-2.
И третьей страной, что совсем неудивительно, является Китай, ведущий разработку собственной гиперзвуковой системы (hypersonic glide vehicle, HGV), получившей название DF-ZF и имеющей второе кодовое название WU-14. Эта система уже семь раз была испытана в полете в промежутке между 2014 и 2016 годами включительно. И по имеющейся информации она может развивать скорость от 5 до 10 Махов, от 6 173 км/час до 12 359 км/час.
Группа ученых и инженеров из Венского Технологического университета, Австрия, создала то, что можно назвать самым сложным на сегодняшний день микропроцессором, изготовленным из плоского двухмерного материала. На кристалле этого чипа находится 115 транзисторов, изготовленных из тончайшей, толщиной в три атома, пленки молибденита, дисульфида молибдена (MoS2). Активный слой чипа этого микропроцессора имеет толщину в шесть десятых нанометра, в то время, как толщина активного слоя обычных кремниевых чипов составляет минимум 100 нанометров.
Ученые надеются, что использование в чипах двухмерных материалов, таких, как графен и молибденит, позволит закону Гордона Мура продержаться еще достаточно долгое время. Графен является превосходным электрическим проводником, что делает его идеальным вариантом для изготовления соединений между компонентами чипа, а молибденит является полупроводником, из которого можно изготавливать элементы транзисторов и других электронных компонентов.
До последнего времени сложность электронных устройств, изготовленных из двухмерных материалов, была невысока, обычно схемы этих устройств содержали по нескольку экземпляров транзисторов. Новое же устройство, созданное учеными из Вены, содержит 115 транзисторов, размещенных на кремниевой подложке. Но, в принципе, схему этого простейшего микропроцессора можно было создать и на поверхности гибкого полимерного основания.
Несмотря на малое количество транзисторов, "плоский" микропроцессор способен выполнять написанные людьми программы, хранящиеся во внешней памяти, производя логические операции над данными и передавая результаты работы на периферийные устройства. Опытный микропроцессор способен выполнять операции только с одним битом данных в каждый момент времени, но архитектура микропроцессора является масштабируемой и без особых затруднений в будущем можно будет создать более сложное устройство, оперирующее данными с большим количеством битов.
Расход энергии "плоским" процессором составляет около 60 микроВатт при работе на таковых частотах от 2 до 20 килоГерц. "С точки зрения производительности наше устройство не идет ни в какое сравнение с нынешними кремниевыми процессорами" - пишут исследователи, - "Тем не менее, оно является первым шагом к созданию электронных устройств нового поколения".
Самый маленький элемент структуры чипа "плоского" микропроцессора имеет размер около 2 микрометров. Тем не менее, ученые считают, что переход к элементам и транзисторам с длиной канала от 100 до 200 нанометров не должен вызвать никаких затруднений, ведь для производства "плоской" электроники используются те же самые методы, что и для производства обычной кремниевой электроники. Улучшив в будущем качество соединительных контактов и уменьшив размеры элементов транзисторов до 1 нанометра можно будет добиться резкого увеличения плотности и быстродействия чипов процессоров.
К сожалению, массовое производство чипов с транзисторами из молибденита в настоящее время невозможно из-за отсутствия технологии производства высококачественной пленки этого материала. Наличие дефектов в изготавливаемых пленках обуславливает то, что работоспособными являются лишь пять процентов от общего количества изготовленных транзисторов. Венские ученые пытаются решить эту проблему путем разработки технологии выращивания молибденитовой пленки прямо на поверхности целевой сапфировой подложки, что позволит устранить сложные и дорогостоящие этапы отдельного выращивания пленки и прикрепления ее к поверхности подложки.
Кроме вышеупомянутой проблемы, для того, чтобы начать всерьез думать об чипах с сотнями миллионов "плоских" транзисторов, будет необходимо перейти от технологии металлооксидных полупроводников n-типа (NMOS) к более традиционной и менее требовательной к количеству энергии КМОП-технологии (CMOS). "Такой переход потребует использования иного двухмерного полупроводникового материала" - пишут исследователи, - "Но у нас уже имеется несколько подходящих кандидатов, в частности, диселенид вольфрама".
Группа исследователей из Лейденского университета, Нидерланды, при содействии специалистов компании IBM, не так давно закончили процесс создания нового суперкомпьютера. Этот суперкомпьютер получил название Little Green Machine II, его вычислительная мощность равна 0.2 Пфлопс. Суперкомпьютер будет использоваться для математических расчетов из области океанографии, для обеспечения работы систем искусственного интеллекта, для моделирования финансовых и астрофизических процессов. Но не все это является главной достопримечательностью суперкомпьютера Little Green Machine II, все дело заключается в том, что размер этой вычислительной системы приблизительно равен размеру положенных друг на друга четырех коробок от пиццы. И этот суперкомпьютер является самой маленькой суперкомпьютерной вычислительной системой в мире на сегодняшний день.
Как уже упоминалось выше, вычислительная мощность системы Little Green Machine II составляет 0.2 Пфлопс. Это 200 000 000 000 000 операций с плавающей запятой в секунду и это сопоставимо с вычислительной мощностью 10 тысяч обычных персональных компьютеров.
Основой суперкомпьютера являются четыре сервера, вычислительная мощность который обеспечивается специализированными графическими ускорителями в количестве четырех штук, по одному на каждый сервер. Сервера связаны друг с другом быстродействующей сетевой магистралью.
В отличие от своего предшественника, системы Little Green Machine I, новая система основания не на архитектуре x86 от компании Intel, а на более высокопроизводительной архитектуре OpenPower, разработанной в компании IBM. Помимо этого, в новой системе использованы специализированные графические ускорители, предназначенные специально для суперкомпьютерных вычислений, а не обычные игровые ускорители. Все это обеспечивает новой системе в 10 раз большую производительность, нежели производительность предыдущей системы.
Для проверки работоспособности системы Little Green Machine II исследователи произвели расчеты математической модели столкновения галактики Млечного Пути с галактикой Андромеды, которое, как считают ученые, произойдет через четыре миллиарда лет. Эта модель была впервые рассчитана несколько лет назад при помощи суперкомпьютера Titan (17.6 Пфлопс), который находится в Национальной лаборатории Ок-Ридж. "Теперь мы имеем возможность производить такие вычисления практически у себя дома" - рассказывает Ерен Бедорф (Jeroen Bedorf).
В свое время мы достаточно часто рассказывали нашим читателям о различных самособирающихся структурах, изготовленных из материалов, меняющих свою форму под воздействием света. Такой механизм хорошо подходит для получения трехмерных форм, состоящих из плоскостей, таких, как кубы и пирамиды. Но для того, чтобы заставить изначально плоский материал свернуться в нечто более сложной формы, ученые из университета Северной Каролины разработали новую технологию, которая позволяет при помощи света с различными параметрами управлять процессом "превращения" с достаточно высокой точностью и избирательностью.
В основу данных исследований легли исследования этой же группы ученых, проведенные еще в 2011 году. Тогда ученым удалось создать плоские шаблоны из материала, который сворачивался в трехмерные объекты под воздействием инфракрасного света. Ключевым моментом разработанной тогда технологии были участки из темного материала, включенные в объем материала или напечатанные на его поверхности в нужных местах. Эти участки поглощают свет более интенсивно, нагреваются и деформируются, перемещая сегмент материала в необходимое положение. А угол отклонения и скорость перемещения регулировались путем изменения ширины и толщины каждой линии светопоглощающего материала.
Одним из недостатков данного метода является то, что воздействие света заставляет перемещаться все изгибы шаблона одновременно. Получить избирательность процесса изгиба ученым удалось за счет изменения цвета материала светопоглощающего материала и, соответственно, длины волны используемого света. Напечатав на основании материала полосы специальными чернилами разного цвета, ученые добились полного управления последовательностью процесса изменения формы. Освещение материала ярким синим светом приводит к началу сворачивания материала по линиям, напечатанным желтыми чернилами, а красный свет вызывает реакцию участков, покрытых чернилами синего цвета.
Такой подход позволяет ученым разработать структуру шаблона с тщательно заданной последовательностью изменения формы. Помимо использования основных цветов чернил, такая технология допускает использование смешанных цветов, что, в свою очередь, позволяет управлять скоростью перемещения отдельных сегментов, которая может быть разной при использовании света одной длины волны.
Возможность создания самособирающихся материалов, в структуре которых заключена "инструкция" по сборке конечного изделия, имеет массу вариантов ее использования. Данная технология может быть использована для создания роботов-трансформеров, которые хранятся в плоском компактном виде и сворачиваются только в случае необходимости их использования. Нечто подобное можно также использовать для развертывания панелей солнечных батарей космических аппаратов, для создания новых электронных компонентов и медицинских устройств.
В течение многих лет ученые-химики занимаются поисками катализатора, способствующего реакции преобразования атмосферного углекислого газа в метан, который является сам по себе одним из основных видов топлива и сырьем для производства топлива других видов. И недавно ученые из университета Дюка (Duke University) нашли еще один высокоэффективный катализатор, крошечные наночастицы, изготовленные из родия, которые способствуют упомянутому выше химическому преобразованию под воздействием ультрафиолетового света.
К сожалению, родий - один из самых редких химических элементов на Земле. Однако, он играет достаточно важную роль в нашей повседневной жизни, он широко используется в различной измерительной технике и выступает в качестве катализаторов реакций, используемых при производстве лекарственных препаратов, моющих средств и другой бытовой химии. Родий так же используется в каталитических конвертерах, делающих выхлопные газы автомобилей менее опасными для окружающей среды.
Сначала ученые пытались использовать для преобразования углекислого газа в метан высокую температуру. Когда родиевые наночастицы были нагреты до температуры в 300 градусов Цельсия, начали идти химические реакции, действительно вырабатывающие метан. Однако, при этом было произведено и такое же количество угарного газа. Но после того, как наночастицы были освещены светом мощной ультрафиолетовой лампы, выход метана увеличился до 100 процентов, а выход угарного газа - снизился до нуля, соответственно.
"Наше открытие и дальнейшее изучение наблюдаемых явлений сможет продвинуть наше понимание тонкостей каталитических процессов далеко вперед" - рассказывает Джи Лью (Jie Liu), профессор химии, - "И после этого мы сможем использовать фотокаталитические реакции, которые имеют большую эффективность и обеспечивают большую чистоту конечного продукта, нежели реакции, идущие при высокой температуре".
А сейчас ученые работают над поиском способа, которым можно заставить идти химические реакции под воздействием естественного солнечного света. И в случае успеха данного мероприятия у человечества может появиться еще один тип альтернативной энергетики.
Центральный банк Сингапура завершил тестирование технологии распределенного реестра для межбанковских платежей.
Валютно-финансовое управление Сингапура (The Monetary Authority of Singapore, MAS) анонсировало тестирование в ноябре прошлого года, совместно с банковским консорциумом R3 и группой банков, среди которых Банк развития Сингапура, HSBC, Банк Америки и JPMorgan.
В MAS обещали, что более развернутый отчет по результатам тестирования будет опубликован позже, однако точной даты не предоставили.
В Центральном банке Сингапура сообщают, что будут продолжать тестирования.
В рамках второго тестирования, согласно MAS, платежную систему Сингапура намерены подключить к платежным системам «других стран», используя при этом технологию распределенного реестра.
Смотрите так же: качественное форекс обучение от Степана Демуры и Николая Фуштей.
Согласно имеющимся прогнозам к 2035 году на дорогах во всем мире будет находиться около 21 миллиона автомобилей-роботов. Для повышения уровня безопасности движения эти автомобили должны будут обмениваться данными друг с другом и с облачными сервисами, на плечи которых ляжет задача координации и управления дорожным движением в целом. В настоящее время уже ведутся разработки подобных систем и основной из проблем, с которой сталкиваются разработчики, является то, что каждый автомобиль в каждый момент времени должен знать свое местоположение и иметь привязку к карте с точностью не хуже 10 сантиметров.
Разработкой системы коммуникации автомобиль-автомобиль и других сопутствующих технологий занимаются специалисты из Политехнического института Нью-Йоркского университета, возглавляемые профессорами И Фэнгом (Yi Fang) и Эдвардом К. Вонгом (Edward K. Wong). Разрабатываемые системы имеют высокий уровень интеграции с облачным сервисом HERE HD Live Map, который, получая данные от бортовых датчиков, камер и другого оборудования автомобиля, рассчитывает оптимальный режим движения, учитывая все быстроизменяющиеся условия окружающей среды.
Следует отметить, что сервис HERE HD Live Map является совместным "детищем" компаний Audi, BMW, Daimler и Intel, а в 2017 году к проекту планируют подключиться китайские компании Tencent, NavInfo, и компания GIC из Сингапура.
Высококачественные навигационные карты, используемые в системе HERE HD Live Map, должны сами имеет точность на уровне 10-20 сантиметров. А транспортные средства, использующие эти карты, должны обновлять свое местоположение на них в режиме реального времени с точностью, соответствующей точности карты. Однако, это само по себе является весьма сложной задачей, ведь существующие датчики и камеры, используемые системами управления автомобилей, не в состоянии обеспечить необходимую для этого точность.
Помимо данных о текущем местоположении, системы автомобилей должны передавать в "облако" данные об дорожных условиях, погоде, обнаруженных препятствиях, об изменении режимов ограничения скорости и других параметрах, из которых складывается картина обстановки на дороге.
Традиционная "прямая" обработка всего этого огромного потока поступающих данных требует соответствующих огромных вычислительных мощностей, мощностей, которыми не обладают еще даже самые высокопроизводительные современные суперкомпьютеры. Поэтому исследователи использовали в своей системе новые технологии трехмерного компьютерного видения и глубинные нейронные сети, которые можно обучить для быстрого решения самых сложных задач, в том числе и составлению "живых" карт для автомобилей-роботов.
Использование вышеупомянутых технологий позволяет системе автомобиля ориентироваться на местности, учитывая сразу множество факторов, используя для этого даже не очень четкие изображения, получаемые камерами автомобиля во время движения. Получающаяся точность определения положения соответствует и даже превосходит точность используемой системой карты, что повышает качество работы "облачного" сервиса и улучшает уровень безопасности движения во много раз.
Как известно, Большой Адронный Коллайдер является самым большим и самым мощным на сегодняшний день ускорителем частиц, который должен помочь ученым глубже проникнуть в некоторые из тайн мироздания. А через не очень продолжительное время это грандиозное сооружение приобретет еще большие возможности благодаря серьезной модернизации оборудования одного из четырех основных экспериментов - Compact Muon Solenoid (CMS). Эта модернизация производится прямо сейчас и руководство Европейской организации ядерных исследований CERN сравнивает ее по сложности и деликатности со сложностью хирургической операции, проводимой на открытом сердце.
В ходе модернизации будет произведена замена нескольких внутренних слоев датчиков частиц эксперимента CMS. Все эти датчики, объединенные в единую систему, представляют собой так называемый пиксельный датчик, который служит для сбора разнообразной информации о частицах, рождающихся в результате сотен миллионов столкновений протонов в секунду, происходящих в точке пересечения лучей коллайдера.
Большой Адронный Коллайдер условно можно рассматривать, как две параллельные трубы, по которым в противоположных направлениях движутся потоки разогнанных почти до скорости света частиц, протонов. Эти трубы пересекаются в нескольких местах и вокруг этих мест установлены различные датчики, некоторые из которых, такие, как датчик эксперимента CMS, имеют поистине огромные размеры. Датчик CMS имеет длину в 20 метров и диаметр 15 метров, а располагается он на глубине 100 метров ниже уровня поверхности.
Пиксельный датчик эксперимента CMS представляет собой достаточно необычную камеру, с разрешением в 124 мегапикселя. Сенсор этой камеры состоит из четырех наложенных друг на друга кремниевых слоев. Когда частицы, рожденные в результате столкновений протонов, проходят сквозь слои датчика, они последовательно генерируют сигналы определенной формы и амплитуды в каждом слое. Анализ собираемых данных позволяет определить направление полета каждой частицы и рассчитать ее основные параметры, что используется для ее дальнейшей идентификации.
Модернизированный датчик эксперимента CMS будет способен производить анализ 50-60 столкновений протонов от одного импульса коллайдера, для сравнения, возможностей старого 66-мегапиксельного датчика хватало на регистрацию 25-30 столкновений от одного импульса. Учитывая, что импульсы следуют через несколько наносекунд, новый датчик будет работать со скоростью порядка 40 миллионов снимков в секунду. Весь громадный объем собираемой информации будет обрабатываться, очищаться от помех, шумов и прочего "мусора", а оставшиеся чистые данные будут использоваться физиками для поиска новых частиц, обнаружения новых явлений и сравнения экспериментальных данных и данных, полученных при помощи теоретических расчетов.
При изготовлении новых чувствительных элементов датчика эксперимента CMS ученым пришлось найти решение ряда не очень и очень сложных проблем, связанных с необходимостью работы датчиков в условиях воздействия сильных потоков заряженных частиц. Более того, сейчас специалисты CERN включись в "гонку со временем", ведь до момента запуска Большого Адронного Коллайдера, который будет произведен первого мая этого года, осталось не так уж и много времени. А модернизированный пиксельный датчик должен до этого времени пройти программу обширного тестирования и калибровки.
Международная группа ученых-астрономов объявила об обнаружении семи экзопланет, размеры которых сопоставимы с размером Земли и которые вращаются вокруг красной карликовой звезды. Согласно имеющимся данным, на поверхности всех семи планет системы звезды TRAPPIST-1 вода может находиться в жидком виде, но лишь орбиты трех планет находятся в области, где остальные условия делают эти планеты благоприятными для зарождения и существования жизни на их поверхности. И это делает систему TRAPPIST-1 одним из самых интересных объектов для исследований учеными, занимающимися поисками следов жизни за пределами Солнечной системы.
Звезда TRAPPIST-1 по размерам только ненамного крупнее Юпитера, ее масса составляет всего восемь процентов от массы нашего Солнца. Система звезды TRAPPIST-1 была обнаружена учеными в прошлом году, и по результатам первых наблюдений в ней было замечено только три планеты. А после того, как данная система была подвержена более тщательному изучению при помощи телескопа Very Large Telescope Европейской Южной обсерватории, космического телескопа НАСА Spitzer и других астрономических инструментов, был обнаружен и подтвержден факт существования в этой системе восьми экзопланет.
Из-за ее малого размера и низкой температуры поверхности звезда TRAPPIST-1 является очень тусклой. И, невзирая на небольшое расстояние, порядка 40 световых лет, изучение этой системы сопряжено с рядом трудностей. Тем не менее, точное количество экзопланет в системе TRAPPIST-1 и основные параметры каждой из них, такие, как размер, орбита и ориентировочный состав, были установлены учеными достаточно традиционным для этого способом - путем регистрации изменений яркости центральной звезды в момент, когда между ней и Землей проходила одна из планет.
Найденные планеты получили соответствующие названия TRAPPIST-1b, c, d, e, f, g и h. Соответственно, планета TRAPPIST-1b является самой близкой к звезде планетой, а планета TRAPPIST-1h - самой удаленной. Система TRAPPIST-1 населена более "густо", нежели Солнечная система, все ее семь основных планет движутся вокруг звезды по орбитам, меньшим, чем орбита, по которой Меркурий вращается вокруг Солнца.
Согласно собранным данным, шесть из самых близких к звезде планет являются каменистыми планетами. Построенные учеными модели указывают на то, что планеты 1b и 1c, вероятно, слишком горячи для того, чтобы на их поверхности могла находиться вода в жидком виде. На поверхности последней планеты системы, 1h, вероятность существования воды в жидком виде достаточно высока. Однако явление, известное, как периодический нагрев, делает климат этой планеты достаточно бурным и непредсказуемым, что не очень подходит для существования жизни на ее поверхности.
Самыми интересными для ученых являются планеты TRAPPIST-1e, 1f и 1g, орбиты которых находятся в благоприятной для жизни зоне, так называемой зоне Златовласки. Существует достаточно большая вероятность того, что на поверхности этих планет могут существовать океаны жидкой воды, которые, как известно, являются "колыбелью" для всех известных нам на сегодняшний день форм жизни.
Сейчас наблюдения за системой звезды TRAPPIST-1 продолжаются при помощи космического телескопа Hubble Space Telescope. А целью этих наблюдений являются поиски следов наличия атмосферы у какой-нибудь из недавно открытых планет системы. Более того, звезда TRAPPIST-1 станет одним из первых объектов исследований для "охотников за планетами" следующего поколения, включая телескоп European Extremely Large Telescope и космический телескоп James Webb Space Telescope.
В 2015 году компания Micro Mote из Мичигана представила вниманию общественности полностью работоспособную компьютерную систему, имеющая габариты в пару миллиметров. Для того, чтобы считаться полноценным компьютером, система должна иметь устройство ввода данных, способность обработать эти данные по определенному алгоритму, способность передачи наружу результатов расчетов и принятия решений на основе этих же результатов. Устройствами ввода у компьютера Micromote являются аналоговые и цифровые порты для принятия сигналов с различных датчиков, а с внешним миром компьютер общается при помощи беспроводных радиотехнологий.
Система, представленная компанией Micro Mote в 2017 году, имеет объем уже в один кубический миллиметр. Более того, компания выпускает целую линейку самых маленьких в мире компьютеров, которые разнятся друг от друга объемами внутренней памяти и функциональными возможностями. А областью применения такой миниатюрной вычислительной техники являются "умные" устройства медицинского назначения и устройства из разряда так называемого "Интернета вещей".
В настоящее время множество микрофонов, камер и других типов датчиков, представляющих собой "глаза и уши" электронных устройств, передают получаемые ими данные в различные облачные службы для их дальнейшей обработки. Это делается из-за того, что процессоры этих устройств просто не в состоянии произвести обработку и анализ потока получаемых данных. И именно для решения данной проблемы предназначены микрокомпьютеры Micromote, обладающие достаточной вычислительной мощностью, объемами памяти и другими ресурсами.
Для выполнения задачи, таких, как распознавание звука проезжающего мимо автомобиля, измерение температуры или уровня освещения, процессорам Micromote требуется всего несколько нановатт энергии. Новый компактный радиопередатчик обеспечивает передачу данных на расстояние до 20 метров, что является существенным улучшением по сравнению с возможностями устройств предыдущего поколения, представленными в прошлом году, которые могли надежно передавать данные только на расстояние в 50 сантиметров.
В недрах одного из типов микрокомпьютера Micromote находится процессор, снабженный функциями глубинного машинного изучения, построенный на базе не очень сложной нейронной сети, которая потребляет при своей работе 288 микроватт энергии. На базе этой нейронной сети можно создавать системы, эффективно выполняющие задачи распознавания речи и визуальных образов. Для сравнения, работа сложных нейронных сетей требует больших объемов памяти и существенной вычислительной мощности, которую в обычных условиях поставляют целые серверные стойки с самыми современными графическими процессорами.
Сверху микрокомпьютера Micromote расположена солнечная батарея, способная заряжать аккумулятор компьютера даже за счет рассеянного света небольшой интенсивности. Для нормальной работы компьютера вполне достаточно уровня освещения, присутствующего в обычной комнате без естественного освещения.
И в заключение следует отметить, что основой микрокомпьютеров Micromote является уникальный процессор Phoenix, первый вариант которого был разработан еще в 2008 году. Размер этого процессора составляет 915 на 915 микрометров, он работает при очень низком напряжении, а расход им энергии составляет всего 500 пВт (для сравнения, 1 пВт - это средний расход энергии одной живой клеткой).