Функция самоликвидации электронного устройства, весьма наглядно продемонстрированная нам в фильме "Миссия невыполнима", скоро сможет стать на защиту информации, хранимой в портативных компьютерах, смартфонах и других электронных устройствах, используемых государственными служащими или сотрудниками корпораций. Новый механизм самоликвидации, разработанный учеными из Научно-технологического университета имени короля Абдаллы (King Abdullah University of Science and Technology, KAUST), Саудовская Аравия, позволяет разрушить электронику за 10 секунд с момента его активации. А эта активация может быть произведена по беспроводной команде, по сигналу от определенных датчиков или массой других способов.
Следует отметить, что на свете уже существует достаточно много различных технологий самоликвидации. Некоторые из них срабатывают достаточно быстро, но требуют использования дорогостоящих кристаллов, в структуре которых специально созданы механические напряжения. Другие же технологии, в которых используются менее дорогие материалы, обеспечивают время срабатывания гораздо дольше 10 секунд, что оставляет злоумышленникам достаточно времени на дезактивацию системы самоуничтожения или на перекачку критической информации на внешний носитель.
Основой новой системы самоликвидации является слой полимерного материала, который быстро увеличивается в объеме минимум в семь раз при нагревании до температуры свыше 80 градусов Цельсия. Тепло, необходимое для этого, вырабатывается нагревателем, черпающим энергию от аккумуляторной батареи электронного устройства. Около 500-600 милливатт энергии, прошедшей через нагреватель системы самоликвидации, позволяют ей уничтожить чип за 10-15 секунд. А при мощности нагревателя в 300 милливатт на это дело требуется около минуты времени. Проведенные эксперименты показали, что силы давления, развиваемой при расширении полимера, достаточно для повреждения кремниевого кристалла, толщиной 90 микрометров.
Использованный полимерный материал представляет собой множество связанных крошечных сфер, внутри которых заключен жидкий углеводородный материал. При повышении температуры от 80 до 250 градусов материал микросфер размягчается, заключенное в них вещество выпускается наружу и быстро испаряется, увеличивая объем полимерного слоя.
Исследователи из KAUST проверили работу системы самоликвидации в нескольких вариантах. В первом варианте использовался датчик GPS, который срабатывал, когда защищаемое устройство удалялось более чем на 50 метров от контрольной точки. Во втором случае система самоликвидации срабатывала от светочувствительного датчика и такой подход можно использовать для защиты устройства от проникновения в его внутренности. И в третьем варианте самоликвидация активировалась дистанционно по команде, полученной от смартфона другого человека, на котором было установлено соответствующее приложение.
А в ближайшем времени исследователи из KAUST планирую испытать новые принципы самоликвидации по отношению не только к чипам, но и к печатным платам, к жестким дискам и другим узлам компьютеров и электронных устройств, на которых может содержаться критически важная и секретная информация.
Если вам доведется попасть внутрь помещения одного из современных информационных центров, то вы попадете в фантастические "джунгли" из серверных стоек, густо опутанных "лианами" оптоволоконных кабелей. Однако в будущем толстые жгуты волоконной оптики могут исчезнуть, а вся информация будет передаваться при помощи лучей инфракрасных лазеров, установленных наверху каждой стойки. Принимать сигналы, передаваемые лучами лазеров, будут датчики, также установленные наверху стоек, а система крошечных подвижных зеркал позволит изменять конфигурацию коммуникационной сети буквально на лету.
Все вышесказанное является идеей Мохсена Кавехрада (Mohsen Kavehrad), профессора из Пенсильванского университета. И в настоящее время он уже создал первый опытный образец лазерной коммуникационной системы, получившей название Firefly, в своей лаборатории. Использованные им инфракрасные лазеры с длиной волны 1550 нанометров, подобные стандартным коммуникационным лазерам, могут обеспечить скорость передачи информации до 10 гигабит в секунду.
Луч лазера проходит через стандартный мультиплексор, позволяющий организовать в нем несколько раздельных коммуникационных каналов, работающих на свете с различной длиной волны. А наружу лазерный свет выводится через обычную линзу из недорогого материала. Опытная система стабильно работала при расстоянии, разделяющем передатчик и приемник, равном 15 метров. Направлением распространения луча управляла система крошечных, размером в 2 мм, зеркал, приводимых в движение микроэлектромеханическими приводами. Система является двунаправленной, что означает, что абоненты на обоих концах линии могут принимать и передавать информацию одновременно.
В качестве испытательного сигнала ученые "загнали" в лазерный коммуникационный канал цифровые телевизионные сигналы абсолютно всех каналов из системы цифрового кабельного телевидения. При этом, в пределах полосы коммуникационного канала осталось еще достаточно места для передачи и других потоков информации.
В зависимости от того, сколько таких лазерных "связей" будет установлено в пределах информационного центра, такая система сможет обеспечить более широкую полосу пропускания и большую гибкость, нежели оптоволоконные кабеля, свичи и маршрутизаторы, используемые в настоящее время. А в будущем, используя самые последние достижения в области инфракрасных лазеров и фотодатчиков, можно будет без труда добиться и терабайтных скоростей передачи информации.
В настоящее время одной из важных нерешенных еще проблем является проблема компенсации вибраций. Все дело заключается в том, что серверные стойки во время работы сильно вибрируют, а источниками вибрации являются многочисленные вентиляторы охлаждения, жесткие диски и другие устройства. "Сильная вибрация основания заставит вибрировать и луч лазера, что чревато значительными потерями передаваемой информации" - рассказывает профессор Кавехрад, - "Сейчас мы разрабатываем ряд методов, которые позволят если не избавиться от вибрации, то хотя бы компенсировать ее влияние. И одной из прорабатываемых нами идей является использование для этого подвижных зеркал, которые уже и так присутствуют в составе системы".
"Пока еще не ясно, сможет ли идея профессора Кавехрада найти воплощения в датацентрах таких гигантов, как Google или Netflix" - рассказывает Джонатан Куми (Jonathan Koomey), один из исследований, - "Вполне вероятно, что данный подход сможет найти применение в более узкой нише - в области построения суперкомпьютерных вычислительных систем, или в еще более узкой - в области специализированных систем, где коммуникации являются критически важной составляющей".
Смотрите так же: новое оптоволоконное оборудование.
Группе ученых, возглавляемой Иоганнесом Финком (Johannes Fink) из австрийского института Науки и техники (Institute of Science and Technology Austria, IST Austria), впервые в истории науки удалось наблюдать экспериментальным путем за явлением фазового перехода первого порядка в рассеивающей квантовой системе. Фазовый переход - это то, с чем нам приходится достаточно часто сталкиваться в обычной жизни, к примеру, когда мы наблюдаем замерзание или таяние воды при переходе точки температуры в 0 градусов Цельсия. Фазовые переходы происходят и на квантовом уровне, но, несмотря на их важность для некоторых областей физики, квантовые фазовые переходы практически не изучены в настоящее время.
Одним из наглядных примеров квантового фазового перехода является так называемое нарушение фотонной блокады, явление, открытое всего около двух лет назад. Суть этого явления заключается в том, что один из фотонов, попавший в ловушку оптической впадины (оптического резонатора) препятствует попаданию туда других фотонов до тех пор пока этот фотон не покинет пределы впадины или не будет поглощен материалом. Однако, при увеличении потока стремящихся попасть во впадину фотонов выше определенного критического предела, явление фотонной блокады нарушается и состояние этой квантовой системы резко переходит от непрозрачного к прозрачному. Такой вид квантового фазового перехода наблюдался учеными неоднократно, однако ученым из Австрии впервые удалось определить и создать целый набор условий, при которых становится возможным изучение данного эффекта.
Во время фазового перехода непрерывное изменение значения какого-либо внешнего фактора, к примеру, температуры, может ускорить или замедлить переход системы от одного стабильного состояния к другому. Фазовые переходы первого порядка характеризуются одновременным сосуществованием двух стабильных фаз системы, такое становится возможным, когда один из контролируемых параметров системы находится в диапазоне, близком к критической точке, точке фазового перехода. Две фазы формируют некоторую промежуточную смешанную фазу, одни части системы уже совершили фазовый переход, а другие - еще нет. В качестве примера можно взять туже воду, находящуюся в стадии замерзания, в ее объеме присутствует и лед и жидкая вода, а общее состояние этой воды еще нельзя назвать ни жидким, ни кристаллическим.
Экспериментальная установка, использованная австрийскими учеными, состояла из сверхпроводящего чипа с микроволновым резонатором на его поверхности. Этот резонатор можно рассматривать и как оптическую впадину, и как квантовый бит, кубит. Чип был охлажден до температуры в 0.01 градуса Кельвина для того, чтобы в наблюдаемые процессы не вмешивались тепловые колебания. Внутрь впадины был направлен непрерывный поток микроволнового излучения, а специальный датчик регистрировал уровень прошедшего через резонатор сигнала. Было замечено, что при определенной интенсивности микроволнового излучения выходной сигнал начинал стохастически колебаться от 100-процентного к нулевому уровню, что говорит о наличии смешанной фазы системы в момент фазового перехода.
"Нам удалось впервые наблюдать случайное переключение между прозрачным и непрозрачным состоянием квантовой системы и все это происходило в полном соответствии с существующей теорией" - рассказывает Иоганнес Финк.
Несмотря на то, что эксперимент австрийских ученых имеет большее отношение к теоретической физике, квантовые фазовые переходы могут оказаться очень полезным явлением для создания элементов квантовой памяти и квантовых процессоров. При помощи этого явления можно будет обеспечить точное управление текущим состоянием квантовой системы, запись и считывание информации из квантовых битов и многое другое.
Специалисты японской компании NTT Resonant, которые заведуют порталом Goo и японской поисковой системой, разработали систему искусственного интеллекта Oshi-el, способную давать советы людям, действуя как своего рода виртуальный психолог. Исследователи сосредоточили свои усилия именно на этой области из-за того, что понимание и поиски ответов на отвлеченные вопросы психологического плана, вопросы взаимоотношений между людьми и т.п., являются весьма сложной задачей для систем искусственного интеллекта.
"Подавляющее большинство виртуальных собеседников, так называемых чатботов, могут дать вам короткие ответы, касающихся определенных фактических вопросов" - рассказывает Макото Нэкэцуджи (Makoto Nakatsuji), - "Ответы на вопросы, касающиеся жизни и любви в общем, особенно в Японии, могут быть очень сложными и содержать целую страницу текста. Эти ответы, как правило, содержат множество взаимосвязей межу различными категориями, такими, как семья, школа, работа и др., что делает составление ответа весьма сложной задачей".
Как и все современные системы искусственного интеллекта, система Oshi-el прошла обучение на 190 тысячах вопросов и 770 тысячах ответов, которые находятся в базе данных форума Oshiete портала Goo. Из всей этой огромной массы данных была вычленена структура предполагаемого ответа на вопрос, в которое включается высказывание сочувствия, предложение одного или нескольких вариантов решения проблемы, дополнительная информация и т.п.
Взяв за основу найденную структуру ответа, система Oshi-el подбирает и комбинирует соответствующие предложения, выбранные из базы на основе ключевых слов, найденных в тексте вопроса. Для того, чтобы не зависеть от слов, имеющих несколько значений, все остальные ключевые слова группируются по категориям, так система определяет к чему относится заданный вопрос, к "романтической ситуации" или к "деловым отношениям", к примеру.
Пока что ответы на вопросы, даваемые системой Oshi-el, "попахивают" шаблонами и предварительными заготовками, тем не менее, все они имеют смысл. "Эта система пока еще не в состоянии самостоятельно написать эссе на отвлеченную тему" - рассказывает Ди Ван (Di Wang), ученый из университета Карнеги-Меллоун (Carnegie Mellon University), - "Для этого системе действительно потребуется понять заданный ей вопрос. Но у нас еще нет даже точного определения того, что значит термин "понимание" в контексте искусственного интеллекта, поэтому интеллект способен уловить только лишь "верхушку айсберга" проблем, скрывающихся в заданном вопросе. Но самым удивительным является то, что в данном случае людей не очень-то и заботит правильность данного им ответа, они хотят услышать то, что им нужно, а не то, что правильно".
В своей дальнейшей работе японские исследователи собираются доработать искусственный интеллект системы Oshi-el до того уровня, когда она при составлении ответа будет оперировать не целыми предложениями, а отдельными словами и фразами. Такой подход позволит системе давать более точные или более пространные ответы, которые уже можно будет принять за ответы, данные живыми людьми.
Ученые-физики из австралийского Национального университета (Australian National University, ANU) разработали и создали опытные образцы крошечных устройств, способных создавать голографические изображения, имеющие самое высокое на сегодняшний день качество и пространственную разрешающую способность. Данное достижение делает на шаг ближе тот момент времени, когда в нашей обычной жизни появятся устройства формирования объемных изображений, знакомые всем нам по различным научно-фантастическим фильмам, в том числе и "Звездным войнам".
Для создания голографических изображений требуется осуществлять самые сложные манипуляции со светом. Зато такие методы позволяю хранить и воспроизводить гораздо большее количество визуальной информации, чем обычные фотографии и изображения на плоских экранах компьютеров и телевизоров. "Исследования в области голографии имеют важное значение не только для создания футуристических трехмерных дисплеев и устройств виртуальной реальности" - пишут исследователи, - "На основе подобных принципов могут быть созданы оптические устройства хранения информации, ультратонкие линзы и другие оптические компоненты для малогабаритных камер и космической техники".
Основой устройства, позволяющего создавать голографические изображения, является основание, на котором находятся миллионы крошечных кремниевых "столбиков" различной высоты, толщина каждого из которых в 500 раз меньше толщины человеческого волоса, и которые расположены упорядоченным образом на расстоянии 750 нм друг от друга. "Этот материал практически прозрачен, он отбирает у проходящего сквозь него света только незначительную часть энергии. Но зато он позволяет производить со светом любые самые сложные манипуляции" - рассказывает доктор Крук (Dr Kruk).
Голографическое устройство, которое имеет размер 0.75 мм, при освещении его светом лазера с длиной волны от 1360 до 1650 нм, способно воспроизвести голографическое изображение, размером в 5 мм, которое "парит" в пространстве на высоте 10 мм от поверхности устройства. А управление создаваемым устройством изображением производится при помощи сложной комбинации магнитных и электрических полей, которые влияют на оптические свойства материала.
"Появившиеся только в последнее время технологии нанопроизводства материалов позволяю наделять эти материалы уникальными оптическими свойствами, которые отсутствуют у материалов естественного происхождения. Созданное нами устройство и воспроизведенные при его помощи голографические изображения является лишь одной из демонстраций возможностей новой технологии, которая может быть использована в самых различных областях".
В настоящее время группа доктора Крука занимается улучшением разработанных технологий, изготовлением и испытаниями очередных опытных образцов голографических устройств. А данные исследования были проведены австралийцами при участии ученых из Национальной лаборатории Ок-Ридж, США, и Наньцзинского университета (Nanjing University), Китай.
Конкурсу Google Lunar XPrize, который находится в стадии реализации уже почти десятилетие, было уделено достаточно много внимания на страницах нашего сайта. А в скором времени новостей, связанных с этим конкурсом, станет еще больше, ведь он неуклонно приближается к финальному кульминационному моменту. Буквально на днях представители фонда XPrize объявили о пяти командах-финалистах, которые уже имеют на руках заключенные контракты с космическими компаниями и которые будут готовы отправить аппараты собственного изготовления на поверхность Луны до 31 декабря этого года.
Напомним нашим читателям, что конкурс Lunar XPrize был организован компанией Google в 2007 году. Его целью является привлечение внимания к новым технологиям автоматического и автоматизированного исследования космического пространства и других планет. Из 30 миллионов американских долларов, выделенных в призовой фонд этого конкурса, 20 миллионов получит победитель, команда, которой первой удастся посадить на поверхность Луны аппарат, который сумеет пройти дистанцию минимум в 500 метров, передавая на Землю видео в HD-ачестве, снимки, телеметрическую и собираемую научную информацию. 5 миллионов долларов получит обладатель второго места, а еще 5 миллионов составляют поощрительный призовой фонд, средства из которого будут присуждаться за отдельные выдающиеся достижения, к примеру, команде, аппарату которой удастся пережить лунную ночь.
Практически все команды-финалисты конкурса Lunar XPrize уже так или иначе знакомы нашим постоянным читателям. Первой командой является американская команда Moon Express, которая работает совместно со специалистами компании Rocket Lab из Новой Зеландии. Объединение этих двух групп состоялось в 2015 году и 600-килограммовый аппарат, разработанный первой командой, отправится к Луне при помощи ракеты компании Rocket Lab, которая будет запущена в конце года со стартовой площадки на полуострове Махия, Новая Зеландия.
У японской команды Hakuto имеется контракт на запуск с японским космическим агентством JAXA. Помимо выполнения основной задачи конкурса, аппарат команды Hakuto займется исследования "дырок" в поверхности Луны, которые являются выходами лавовых "трубок". Изначально команда Hakuto планировала объединить усилия с командой Astrobotic, но последняя сделала свой выбор в пользу индийской команды Moon Rover ECA, запуск которой будет произведен в декабре 2017 года при помощи индийской ракеты PSLV.
Самый первый контракт на запуск среди участников конкурса Lunar XPrize удалось заиметь израильской команде SpaceIL Этот контракт был заключен в октябре 2015 года с известной космической компанией SpaceX. Интересен тот факт, что израильтяне не будут использовать традиционный луноход. Их космический аппарат после приземления сможет снова подняться над поверхностью и переместиться в другую точку "по воздуху".
И последней командой является сборная международная команда Synergy Moon, в состав которой входят специалисты и руководители компании Interorbital Systems. Именно эта компания и будет производить запуск своей ракеты, которая стартует с морской площадки близ побережья Калифорнии во второй половине этого года.
Все пять команд-финалистов уже произвели коррекцию своих планов для того, чтобы произвести запуски до 31 декабря 2017 года. И чем бы ни закончилось данное мероприятие, скоро на поверхности Луны начнется настоящее "столпотворение", которое принесет нам множество интересных новостей.
Группа исследователей из Северо-Западного университета (Northwestern University) разработала новую модель для систем искусственного интеллекта, которая превосходит средний человеческий уровень по результатам стандартных тестов проверки уровня интеллекта (IQ). Данная модель является значительным шагом на пути к созданию более сложных систем, которые воспринимают и понимают окружающий мир в точности так, как это делают люди.
"Результаты, демонстрируемые нашей моделью в стандартных тестах на IQ, превосходят результаты людей в 75 процентах случаев. Это указывает на то, что интеллектуальные способности нашей системы превосходят способности среднестатистического человека" - рассказывает Кен Форбус (Ken Forbus), один из разработчиков новой модели, - "Проблемы, являющиеся сложными для людей, вызывают затруднения и у искусственного интеллекта. Это и некоторые другие свидетельства указывают на то, что процесс познания окружающего мира у модели не сильно отличается от процесса познания мира людьми".
Новая вычислительная модель основана на платформе систем искусственного интеллекта CogSketch, разработанной специалистами лаборатории Кена Форбуса. Эта платформа способна распознавать визуальную информацию, даже представленную в виде примитивных эскизов и набросков, связывая ее с известными ей реальными вещами и явлениями. В эту модель также заложены алгоритмы проведения аналогий, основанные на теории, разработанной профессором психологии Дедрой Гентнера (Dedre Gentner).
Разработанная модель искусственного интеллекта была проверена при помощи специализированного теста Raven's Progressive Matrices, теста, требующего наличия у тестируемого достаточно развитого абстрактного мышления. Все задания в этом тесте состоят из упорядоченных особым образом наборов, в которых отсутствует одно изображение. Тестируемому предлагается сделать выбор одного из шести-восьми вариантов изображений, которое послужит завершением неполного набора. И новая модель при таком тестировании показала результаты, превосходящие результаты среднего человека.
"Тест Рэйвена является лучшей на сегодняшний день проверкой способностей гибкости и абстрактности мышления. Для правильного выбора испытуемым требуется рассуждать и мыслить абстрактными категориями, идентифицировать образы, определять взаимоотношения и решать связанные с этим проблемы" - рассказывает Эндрю Ловетт (Andrew Lovett), бывший студент Северо-Западного университета, являющийся сейчас сотрудником Военно-морской Научно-исследовательской лаборатории (US Naval Research Laboratory).
Развитие способности понимания и использования сложных относительных представлений является ключевым моментом к созданию интеллекта с возможностью познания высшего порядка. Относительные представления соединяют различные предметы, категории, явления и идеи, к примеру, "часы, висящие над дверью" или "факт того, что перепад давления заставляет течь воду". Такие типы сравнения важны для создания и понимания аналогий, которые используются людьми для решения проблем, преодоления моральных дилемм и описания окружающего нас мира.
"Большинство создаваемых сейчас систем искусственного интеллекта нацелены на распознавании и идентификации того, что находится в окружающем пространстве" - рассказывает Форбус, - "Но распознавание и идентификация полезны лишь тогда, когда за ними следуют рассуждения, касающиеся идентифицированных объектов. Системы искусственного интеллекта следующего поколения должны будут иметь возможность рассуждать об увиденном. Только тогда их возможности начнут приближаться, а то и превзойдут возможности людей, обладающих самым высоким уровнем интеллекта".