Известная компания General Atomics не так давно провела очередные стрельбы из рельсотронного орудия Blitzer, энергия выстрела которого составляет сейчас 3 мегаджоуля. Но не это самое интересное, самым интересным является то, что для стрельбы использовался первый в своем роде управляемый снаряд. Этот снаряд, подвергающийся в момент выстрела воздействию ускорения в 30 тысяч g и разгоняющийся до скорости в 5 Махов (6 125 километров в час), оснащен системой Guidance Electronics Unit (GEU), в состав которой входят навигационные датчики, устройства беспроводной связи, процессоры и исполнительные элементы, позволяющие управлять направлением полета снаряда.
В области военной техники рельсотронные орудия рассматриваются в качестве перспективной замены обычным артиллерийским системам. Снаряды, летящие со скоростью, в несколько раз быстрее скорости звука, тяжело не то, что перехватить, их просто тяжело обнаружить. При этом, снаряду не нужно нести заряд взрывчатого вещества, для поражения даже хорошо бронированной цели вполне достаточно кинетической энергии самого снаряда.
Рельсотронное орудие Blitzer, как и все электромагнитные орудия, использует для стрельбы только электрическую энергию, предварительно накапливаемую в специальных батареях быстродействующих электрических конденсаторов. Эта энергия, направленная в рельсы орудия и его электромагниты, разгоняет снаряд с ускорением до 60 тысяч g, и для сохранения целостности самого снаряда используется специальная защитная оболочка, которая сбрасывается после того, как снаряд покидает ствол орудия. Энергии снаряда, выпущенного из орудия Blitzer, достаточно для того, чтобы он пролетел еще 6.5 километров после того, как он пробил лист броневой стали, толщиной 3.2 миллиметра.
Помимо работы "пакета" электроники внутри снаряда, во время испытательных стрельбы была проведенная проверка работы системы непрерывной двухсторонней связи между снарядом и оборудованием центра управления стрельбой. Помимо этого, управляемые снаряды имеют несколько отличную от предыдущих вариантов форму, что позволяет им сохранить структурную целостность при высоком ускорении.
В настоящее время специалисты компании General Atomics работают над новой системой накопления энергии High Energy Pulsed Power Container (HEPPC). В недалеком будущем эта система позволит орудию Blitzer использовать при выстреле в два раза большую энергию, нежели используют другие импульсные электромагнитные системы. А компактные размеры новой силовой системы позволят использовать рельсотронные орудия в мобильном варианте как на земле, так и на море.
"В скором будущем мы проведем ряд испытаний, используя орудие Blitzer, которое будет обеспечивать энергию выстрела уже в 10 мегаджоулей" - рассказывает Ник Бучи (Nick Bucci), один из руководителей подразделения Electromagnetic Systems (GA-EMS) компании General Atomics, - "И с каждым следующим выстрелом мы будем совершенствовать все технологии, пока не получим реальную рельсотронную артиллерийскую систему многоразового использования, годную для применения на суше и на море".
Специалисты компании Tokomak Energy, располагающейся в Оксфорде, Великобритания, произвели первые запуски и получили высокотемпературную плазму в камере нового экспериментального термоядерного реактора ST40. Согласно предварительным расчетами, этот реактор, который является самым совершенным реактором в Великобритании на сегодняшний день, будет способен разогреть плазму до температуры в 100 миллионов градусов. Эта температура выше температуры в центре Солнца в семь раз и ее будет достаточно для инициации и поддержания стабильных управляемых реакций термоядерного синтеза.
Следующими шагами специалистов компании Tokomak Energy станет завершение установки полного комплекта катушек электромагнитов. Это позволит разогреть плазму внутри реактора ST40 до температуры в 15 миллионов градусов, температуры материи в центре Солнца. И согласно планам руководства компании, эта температура должна быть получена уже осенью этого года.
Отметим, что "корни" компании Tokomak Energy растут из лаборатории Калхэма (Culham Laboratory), которая является одним из ведущих мировых учреждений, в стенах которого ведутся исследования термоядерного синтеза и где располагается реактор JET, один из самых мощных токамаков в мире на сегодняшний день.
Как и в других токамаках, реактор ST40 работает при помощи магнитного поля, вырабатываемого электромагнитами. Только в данном случае используются электромагниты с обмотками из высокотемпературного сверхпроводящего материала (high temperature superconducting, HTS). Благодаря использованию таких материалов магниты не требуют криогенного охлаждения и огромного количества энергии для своей работы, что, в свою очередь, позволило инженерам создать весьма и весьма компактную установку, обладающую высокой эффективностью.
И в заключении следует отметить, что реактор ST40 является уже не первым реактором, созданным в компании Tokomak Energy. Предыдущий реактор, ST25, который был уже вторым по счету, является первым в мире токамаком, в котором использованы электромагниты из высокотемпературных сверхпроводников. И этот реактор в 2015 году установил мировой рекорд, удерживая высокотемпературную плазму в своей камере непрерывно в течение 29 часов.
Группа ученых Европейской организации ядерных исследований CERN, работающая с оборудованием эксперимента ALICE Большого Адронного Коллайдера (БАК), сообщила о том, что им удалось обнаружить признаки весьма необычного явления, возникающего изредка во время столкновений высокоэнергетических лучей протонов. Процессы, происходящие во время таких столкновений протонов, подобны процессам, происходящим при столкновениях разогнанных ядер тяжелых элементов, во время которых "рождается" большое число субатомных частиц, называемых странными адронами. Эти странные адроны имеют названия Kaon, Lambda, Xi и Omega, а свое "странное" название они получили из-за того, что в их состав входит минимум один странный кварк.
Большое количество появляющихся странных адронов является признаком существования так называемой кварково-глюонной плазмы, чрезвычайно горячей и плотной субстанции, которая по мнению ученых заполняла Вселенную спустя несколько миллисекунд после момента Большого Взрыва. Такая плазма возникает обычно при столкновениях ядер тяжелых элементов и данный случай является первым случаем в истории науки, когда возникновение кварково-глюонной плазмы было замечено при столкновениях протонов. Следует отметить, что данное открытие бросает вызов некоторым из существующих теорий, согласно которым при столкновениях протонов не может образовываться ни кварково-глюонной плазмы, ни большого количества странных частиц.
"Мы были очень взволнованы сделанным открытием" - рассказывает Федерико Антинори (Federico Antinori), представитель научного объединения эксперимента ALICE, - "Однако, благодаря данному открытию мы получили возможность узнать множество нового об исконном состоянии материи. Возможность получения кварково-глюонной плазмы в простой системе открывает массу новых возможностей для изучения фундаментальных законов, определяющих состоянии материи, из которой позже сформировалась наша Вселенная".
Исследования процессов, протекающих в среде кварково-глюонной плазмы, позволят определить некоторые из параметров и характерных особенностей сил сильных ядерных взаимодействий, одной из четырех фундаментальных сил. Кварково-глюонная плазма возникает только при условии достижения столь высокой температуры, при которой на составляющие части "разваливаются" не только атомы материи, но и субатомные частицы. Кварки и глюоны, из которых состоят субатомные частицы, обретают свободу и получившаяся плазма демонстрирует свойства весьма экзотической жидкости.
Кроме того, в пределах плазмы происходят превращения кварков из одного типа в другой. Странный кварк более массивен, нежели другие кварки, из которых состоит обычная материя, и его, как правило, более тяжело получить в чистом виде. Более того, плазма сама является своего рода регулятором соотношения возникающих странных кварков и кварков других типов. При достижении определенного уровня энергетической плотности в кварково-глюонной плазме возникает равновесие между количеством возникающих странных и нормальных кварков.
Помимо всего прочего, результаты сделанного открытия указывают на то, что увеличение количества возникающих странных частиц также сопровождается увеличением степени их разнообразия. Поскольку внутри сталкивающихся протонов не содержится странных кварков, то количество полученных странных кварков не зависит от энергии столкновения, зато прослеживается зависимость количества таких кварков от массы первичных частиц, рожденных в результате столкновений протонов, частиц, в состав которых уже могут входить странные кварки.
Подобные эффекты были впервые обнаружены в девяностых годах во время проведения экспериментов на ускорителе Super Proton Synchrotron. Только в этих экспериментах использовались столкновения не протонов, а ядер тяжелых элементов. И обнаружение подобного эффекта при столкновении протонов в БАК дает ученым возможность более подробно и досконально изучить все процессы и механизмы, происходящие внутри кварково-глюонной плазмы.
И в заключении следует отметить, что основной задачей эксперимента ALICE является изучение столкновений ядер тяжелых элементов, свинца, в частности. Датчики эксперимента также регистрируют процессы, происходящие при столкновениях протонов, однако, получаемые при этом данные служат чем-то вроде калибровочных точек для проведения измерений во время более "тяжелых" столкновений. Измерения, в результате которых была обнаружена кварково-глюонная плазма, порожденная столкновениями протонов, была получена при энергиях столкновения в 7
Данные, полученные при помощи датчиков эксперимента LHCb Большого Адронного Коллайдера (БАК), указывают на существование аномальных процессов распада элементарных частиц определенного типа. Если существование обнаруженных аномалий будет подтверждено в ходе дальнейших исследований, то они станут признаком наличия некоторых явлений и процессов, которые совершенно не вписываются в рамки существующей Стандартной Модели физики элементарных частиц. Полученные результаты пока еще имеют малое значение статистической достоверности, и лишь дальнейшая работа в данном направлении позволит ученым выяснить, действительно ли все это является "трещиной" в Стандартной Модели или простой статистической экспериментальной ошибкой.
На семинаре, проведенном Европейской организацией ядерных исследований CERN, ученые-физики эксперимента LHCb представили всеобщему вниманию собранные ими данные, касающиеся процесса распада частицы под названием B-мезон, которые иногда рождаются в результате столкновений лучей протонов в Большом Адронном Коллайдере. Согласно Стандартной Модели распад B-мезона может происходить несколькими способами.
Одним из способов распада B-мезона является его распад до каона (К-мезона) с образованием пары электронов или пары мюонов. Мюон в 200 раз более тяжел, чем электрон, но, согласно Стандартной Модели, все взаимодействия мюонов с окружающим миром практически идентичны таковым взаимодействиям со стороны электронов. Это явление известно в физике под названием универсальности лептонов. Явление универсальности лептонов определяет, что в случаях распада B-мезона распады с образованием электронов и мюонов должны происходить приблизительно в одинаковой пропорции с небольшим отклонением из-за существенной разницы в массе образующихся частиц.
Экспериментальные же данные, собранные датчиком LHCb, говорят о том, что процессы распада B-мезона с образованием мюонов происходят гораздо реже распада с образованием электронов. Ученые считают, что причиной такого несоответствия является некая новая частица, получившая название Z9, которая появляется в цепочке распада и которая порождает потом короткоживущий истинный кварк.
В настоящее время эти факты, которые вероятно указывают на несоответствия в Стандартной Модели, имеют статистическую достоверность на уровне от 2.2 до 2.5 сигма, чего еще недостаточно для окончательных выводов. Интерес к данной аномалии подогревается еще тем, что в ходе некоторых последних измерений, проведенных в рамках эксперимента LHCb, были получены подтверждения подобного поведения B-мезонов.
Справедливости ради следует отметить, что на Большом Адронном Коллайдере было сделано множество других измерений, результаты которых идут вразрез со всем приведенным выше и которые указывают на симметрию электронов и мюонов. Несоответствия этой симметрии были обнаружены в данных, собранных в ходе первого периода работы БАК. Так что у ученых имеется еще обширнейшее поле для деятельности, весь огромный массив данных, собранных во время второго периода работы коллайдера и данные, собираемые в настоящее время. И если существование аномального распада B-мезона найдет подтверждение во всем массиве имеющихся данных, значения статистической достоверности станет достаточно для признания наличия несоответствий Стандартной Модели, которые, в свою очередь, указывают на наличие некоей новой физики, выходящей за грани существующих знаний.
Неподалеку от места, где в свое время Эдвин Лэнд (Edwin Land), изобретатель фотоаппаратов Polaroid, делал свои открытия, связанные с поляризованным светом, группа исследователей из Школы технических и прикладных наук (School of Engineering and Applied Sciences, SEAS) Гарвардского университета продолжает открывать новые возможности, предоставляемые этим поляризованным светом. Группа, возглавляемая профессором Федерико Капассо (Federico Capasso), закодировала в виде метаповерхности, поверхности со сложной структурой, несколько голографических изображений, каждое из которых можно воспроизвести, освещая эту поверхность светом с определенным углом поляризации.
Напомним нашим читателям, что поляризация света - это плоскость, в которой происходят колебания электромагнитных волн фотонов. В своих предыдущих исследованиях группе профессора Капассо удалось разработать особый вид метаповерхности, которая чувствительна к поляризации падающего на нее света. Это позволило им закодировать в одной поверхности два разных изображения, но оба этих изображения сильно влияли друг на друга, внося заметные глазу искажения.
Новая метаповерхность изготавливается из диоксида титана, достаточно распространенного в природе материала. Во время изготовления на поверхности создается множество выступов, форма которых напоминает форму рыбьего плавника, которые отражают падающий на поверхность свет строго определенным образом. В отличие от подобных поверхностей, созданных ранее, которые имели однородные по размерам выступы, выступы на новой поверхности имеют свою собственную ориентацию в пространстве, высоту и ширину. И именно этим кодируются "зашитые" в поверхность голографические изображения.
"Каждый нановыступ имеет свои уникальные свойства по отношению к свету определенной поляризации, падающему под определенным углом" - рассказывает Ноа Рубин (Noah Rubin), научный сотрудник лаборатории профессора Капассо, - "Мы уже создали библиотеку "стандартных элементов" метаповерхности, при помощи которой можно закодировать в ней практически любое изображение".
Использование метаповерхности нового типа позволяет в теории закодировать в ней достаточно большое количество различных голографических изображений. Но в настоящее же время наилучшие результаты получаются при кодированию двух изображений и света, плоскости поляризации которого перпендикулярны друг другу.
А в более глобальном плане данные исследования могут привести к появлению новой области - области поляризационной оптики, которая позволит сделать то, чего невозможно достичь при использовании традиционной "классической" оптики. Это, в свою очередь, позволит разработать совершенно новые технологии защиты, новые технологии для индустрии развлечений и многое, многое другое.
Группа инженеров из Ливерморской Национальной лаборатории имени Лоуренса (Lawrence Livermore National Laboratory, LLNL) разработала новую технологию трехмерной печати металлических изделий, которая в корне отличается от существующих технологий лазерного плавления металлического порошка, повсеместно используемых сейчас в различных отраслях промышленности. В этой технологии используются металлы в критическом полутвердом состоянии, которые могут вытекать через сопло головки принтера под воздействием приложенного к ним давления. А дальнейшее развитие данной технологии позволит наладить производство более высококачественных и более легких металлических изделий, не требующих последующей механической обработки.
Разработанная технология носит название прямой печати металлом (direct metal writing). В этой технологии металлическая заготовка предварительно нагревается до температуры, при которой металл или сплав переходит в полутвердое-полумягкое состояние. В этом состоянии в объеме металла присутствуют мелкие твердые металлические частицы, окруженные слоем жидкого металла, который уже успел расплавиться. И при приложении к такому металлу не очень большого давления твердые металлические частицы отрываются друг от друга, и металл начинает течь через сопло головки, подобно зубной пасте, выдавливаемой из тюбика.
Естественно, что выйдя из сопла трехмерного принтера и войдя в контакт с более холодными слоями этого же металла или материала подложки, металл остывает и становится твердым. Температура выходящего из сопла металла подбирается так, чтобы металл надежно сплавился с предыдущими слоями и при этом не начало образовываться большого количества дефектов в виде пузырей или полостей. "Главным вопросом, который нам пришлось решить, был точнейший и жесткий контроль над потоком металла, выходящего из головки принтера" - рассказывает Энди Паскалл (Andy Pascall), - "И когда мы создали технологию такого контроля, мы получили возможность печатать различные структуры таким способом, которым это не делалось никогда ранее".
Но, прежде чем данная технология доберется до этапа промышленного применения, инженерами из LLNL будет необходимо проделать еще массу работы. Первой задачей, которую они будут решать в самом ближайшем времени, станет задача повышения разрешающей способности трехмерной печати. А после этого они перейдут к задаче использования в печати материалов, широко используемых в промышленности, алюминия, титана и сплавов этих легких металлов. В настоящее время в опытном образце трехмерного принтера используется сплав висмута и олова, имеющий низкую точку плавления. С одной стороны это избавляет от массы проблем и облегчает процесс печати, а с другой - приводит к появлению дополнительных сложностей, ведь этот сплав быстро застывает и частицы твердого металла забивают сопло головки принтера.
Сейчас исследователи уже начали экспериментировать с некоторыми сплавами алюминия, которые имеют более высокую точку плавления. Это, в свою очередь, приводит к возникновению целого ряда технических проблем, но, как говорится, "овчинка стоит выделки", ведь изготовленные из таких сплавов детали и узлы можно будет использовать на земле, в воздухе и в космосе.
Ровно через один месяц в Тулузе, Франция, будет проведена первая в истории гонка, в которой примут участие наноразмерные "автомобили", состоящие в среднем из 100 атомов различных химических элементов и способные развивать скорость до 5 нанометров в час. И для того, чтобы преодолеть расстояние в одну милю (~1.6 километра), таким наноавтомобилям потребуется около 37 миллионов лет.
Организатором гонки NanoCar Race является французский Национальный центр научных исследований (National Center for Scientific Research), а в качестве гоночной трассы будет использована полированная поверхность золотого диска, охлажденного до температуры в - 270 градусов по шкале Цельсия. Длина гоночной трассы составляет 100 нанометров, а увидеть все происходящее на ней можно будет только при помощи специального сканирующего туннельного микроскопа. Кроме этого, наконечник этого микроскопа будет использоваться для снабжения наноавтомобилей энергией и для управления их движением.
Из всех команд, которые изначально планировали принять участие в гонке NanoCar Race, из-за некоторых ограничений примут участие только четыре команды. Но, вполне вероятно, что за месяц эта ситуация может измениться и из гонки могут выбыть или в ней могут появиться новые участники, которым за это время удастся привести свои наноавтомобили в соответствие с требованиями.
Самой большой проблемой, с которой сталкиваются все разработчики наноавтомобилей, является то, что ни у одного из них нет собственного двигателя. Узлы этих крошечных транспортных средств будут двигаться за счет энергии электронов, туннелирующихся с наконечника сканирующего микроскопа. При этом всегда присутствует вероятность того, что химические связи между отдельными атомами будут разрушены электрическим полем, а сам наноавтомобиль, в таком случае, потеряет свою целостность и способность двигаться. Именно поэтому 36-часовая гонка NanoCar Race имеет нечто общее с гонками на выживание типа Ле-Ман, гонками, где на первый план выдвигаются не только скоростные качества автомобилей, а надежность их конструкции и конструкции отдельных узлов.
И в заключение следует отметить, что гонка NanoCar Race может сыграть для области нанотехнологий точно такую же роль, как и традиционные гонки для автомобильной промышленности. В ходе этих соревнований учеными будут разработаны и испытаны новые процессы поатомной сборки нанразмерных структур, технологии управления движением этих структур и многое другое. К сожалению, нам с вами не удастся увидеть маневры нанокаров на резких виражах, ни услышать визг нанопокрышек на крутых поворотах, все происходящее на нанразмерной гоночной трассе будет доступно лишь в виде последовательности снимков, сделанных при помощи электронного микроскопа.
Наблюдения за фенотипом, за физическими характеристиками растущих растений, являются основным методом определения "состояния здоровья" и прогнозирования урожайности сельскохозяйственных культур. Однако, все это является однообразной утомительной и отнимающей много времени работой, особенно при условии наблюдений за большими площадями сельскохозяйственных угодий. Эта работа сама просится для того, чтобы возложить ее на плечи робота или другой автоматизированной системы, и группа исследователей из университета Иллинойса, возглавляемая профессором Стивеном П. Лонгом (Stephen P. Long), недавно закончила разработку и изготовление первого образца робота, предназначенного для осмотра и исследований растущих растений.
Созданный исследователями робот способен работать в полуавтоматическом режиме, ориентируясь на местности при помощи системы GPS. Управляет роботом находящийся неподалеку человек, который направляет его так, чтобы вездеходные гусеницы причиняли растениям минимальный ущерб.
Робот оборудован массой всевозможных датчиков, включая высококачественные многоспектральные и тепловые камеры, импульсные лазерные сканеры и т.п. Все эти датчики позволяют собирать данные о фенотипе растения, включая данные о диаметре ствола, высоте и площади листьев. А данные о температуре, влажности почвы и воздуха, собираются при помощи портативной метеостанции.
Все собираемые роботом данные сохраняются в памяти бортового компьютера и передаются на ноутбук человека, управляющего этим роботом. При помощи этих данных можно создать полноценную трехмерную модель конкретного растения, построить прогнозирующие модели его дальнейшего роста, роста его биомассы и планируемую урожайность.
В настоящее время новый робот прошел испытания на полях, засаженных обыкновенным сорго, культурой, используемой для производства биотоплива. Результаты этих испытаний указывают на то, что робот сможет также хорошо работать и с другими культурами, включая основные зерновые культуры.
В настоящее время исследователи работают над новым вариантом робота, который будет более "худым", нежели первый прототип, и который сможет за счет этого более легко передвигаться между рядами растений. Исследователи прогнозируют, что законченный вариант робота появится к 2021 году, а его стоимость не будет превышать 5 тысяч долларов.
В течение многих лет ученые-химики занимаются поисками катализатора, способствующего реакции преобразования атмосферного углекислого газа в метан, который является сам по себе одним из основных видов топлива и сырьем для производства топлива других видов. И недавно ученые из университета Дюка (Duke University) нашли еще один высокоэффективный катализатор, крошечные наночастицы, изготовленные из родия, которые способствуют упомянутому выше химическому преобразованию под воздействием ультрафиолетового света.
К сожалению, родий - один из самых редких химических элементов на Земле. Однако, он играет достаточно важную роль в нашей повседневной жизни, он широко используется в различной измерительной технике и выступает в качестве катализаторов реакций, используемых при производстве лекарственных препаратов, моющих средств и другой бытовой химии. Родий так же используется в каталитических конвертерах, делающих выхлопные газы автомобилей менее опасными для окружающей среды.
Сначала ученые пытались использовать для преобразования углекислого газа в метан высокую температуру. Когда родиевые наночастицы были нагреты до температуры в 300 градусов Цельсия, начали идти химические реакции, действительно вырабатывающие метан. Однако, при этом было произведено и такое же количество угарного газа. Но после того, как наночастицы были освещены светом мощной ультрафиолетовой лампы, выход метана увеличился до 100 процентов, а выход угарного газа - снизился до нуля, соответственно.
"Наше открытие и дальнейшее изучение наблюдаемых явлений сможет продвинуть наше понимание тонкостей каталитических процессов далеко вперед" - рассказывает Джи Лью (Jie Liu), профессор химии, - "И после этого мы сможем использовать фотокаталитические реакции, которые имеют большую эффективность и обеспечивают большую чистоту конечного продукта, нежели реакции, идущие при высокой температуре".
А сейчас ученые работают над поиском способа, которым можно заставить идти химические реакции под воздействием естественного солнечного света. И в случае успеха данного мероприятия у человечества может появиться еще один тип альтернативной энергетики.
Международной группе ученых удалось создать и провести первые в истории наблюдения за новым состоянием материи, которое называется временным кристаллом. В обычных кристаллах атомы расположены в определенном порядке, который повторяется в пространстве в различных направлениях, структура временных кристаллов не имеет пространственной упорядоченности, вместо этого она повторяется через определенные промежутки времени. Возможность существования временных кристаллов была теоретически обоснована в 2012 году, но практическое их создание считалось невозможными из-за того, что они нарушают законы теплового равновесия. И создание образцов таких кристаллов является первыми шагами в неизведанный доселе мир неравновесных фаз состояний материи.
Идея о возможности существования временных кристаллов была выдвинута в 2012 году ученым-физиком и Лауреатом Нобелевской премии Франком Вилкзеком (Frank Wilczek) из Массачусетского технологического института. После этого было опубликовано множество научных работ по этой теме, в некоторых из которых предлагались новые способы создания временных кристаллов, а в других приводились доказательства невозможности их существования. В 2016 году группа ученых из Калифорнийского университета в Беркли в общих чертах обрисовала один из методов создания временных кристаллов в лабораторных условиях, и спустя не очень продолжительное время это принесло практические результаты.
Странную природу временных кристаллов Норман Яо (Norman Yao), ученый из Калифорнийского университета, демонстрирует на примере тарелки, на которой лежит достаточно высокий кусочек желе. "Если качнуть такую тарелку, то желе начнет колебаться и амплитуда этих колебаний будет затихать со временем до той поры, пока вы не качнете тарелку снова. Временные кристаллы ведут себя совсем по-другому, их атомы будут периодически колебаться, возвращаясь к одному и тому же образу через определенные интервалы времени. И самым парадоксальным является то, что все это происходит без любой движущей силы, воздействующей на кристалл извне".
Так что же из фундаментальной физики нарушает факт существования временных кристаллов? В большинстве случаев атомы вещества, имеющие более высокую температуру, будут отдавать излишки тепловой энергии соседним с ними атомам. Этот процесс будет продолжаться до тех пор, пока абсолютно все атомы в рассматриваемом объеме пространства не станут иметь одну и ту же температуру. Такое состояние материи называется состоянием теплового равновесия, но временные кристаллы никогда не смогут достичь такого состояния, постоянно переходя из одной неравновесной фазы в другую.
Для того, чтобы создать временной кристалл, исследователи использовали ионы иттербия. Эти ионы поднимались и удерживались при помощи электрического поля, а первоначальный толчок, "запустивший вечный двигатель" временного кристалла, был произведен при помощи импульса лазерного света. Импульсы света других дополнительных лазеров использовались для того, чтобы упорядочить движение ионов, после чего это движение приобрело повторяющийся во времени характер.
Здесь следует особо отметить, что характеристики первоначального импульса лазерного света и импульсов дополнительных лазеров были подобраны таким образом, что энергия этих импульсов не могла выступать в роли силы, заставляющей двигаться всю систему ионов. Эти импульсы служили только для задания временного ритма движения. Все, что происходило с системой ионов иттербия, полностью укладывается в рамки, определяемые теорией Франка Вилкзека, и это служит доказательством того, что ученым все же удалось создать первый действующий временной кристалл.
В настоящее время очень тяжело придумать вариант практического использования данного достижения. Исследования в направлении неравномерных фаз состояния материи находятся только на самой ранней стадии, но ученые считают, что нечто подобное в будущем может быть использовано для хранения и передачи информации, в области квантовых вычислений и в некоторых других областях, о которых мы, возможно, еще не имеем сейчас ни малейшего представления.
Итальянская компания-производитель мебель Vitra совместно с дизайнером Carlo Ratt представили, как говорят производители, первый в мире диван-трансформер, управляемый из приложения. Система получила название Lift-bit и может принимать самые разные формы — в зависимости от предпочтения пользователя.
Технически Lift-bit представляет собой связку блоков по форме повторяющих шестиугольник. К каждой такому блоку прикреплён моторизированный механизм, который, в свою очередь, управляется при помощи специального приложения на планшете. Пользователь несколькими щипками может изменить классическую софу на кресло с подлокотниками и столиком для напитков, затем на кушетку с валиком для ног, а после на двуспальную кровать с полкой для ноутбука. Точное число возможных вариантов исполнения не называет даже автор проекта, зато он убежденно заявляет, что наконец-то создан диван, на котором одинаково удобно будет и людям высоким, и людям тучным и маленьким детям.
Lift-bit можно перевести в свободный режим, и когда на диване никто не сидит, то он самостоятельно начнёт менять конфигурации, как бы демонстрируя свои возможности.
Смотрите так же: диваны трансформеры с ручным управлением :)

Компания Ford в ходе выставки мобильной индустрии MWC 2017 в испанской Барселоне сообщила о намерении оборудовать свои автомобили для европейского рынка беспроводной связью Wi-Fi.
Проект будет реализован при поддержке Vodafone. Сообщается, что компании обеспечат 4G/LTE-связь в автомобилях благодаря новому встроенному модему FordPass Connect с мобильной точкой доступа Wi-Fi. Устройство имеет внешнюю антенну и позволяет одновременно подключать к сети до 10 гаджетов. Это даст пассажирам возможность комфортно пользоваться Интернетом в пути.
Более того, FordPass Connect в комплексе с приложением FordPass даст автомобилистам возможность дистанционно взаимодействовать со своим транспортным средством. В частности, водители смогут удалённо запирать и отпирать двери, проверять информацию об уровне топлива и масла, давлении в шинах, заряде аккумулятора, узнавать показания одометра, проверять статус сигнализации, а также просматривать местоположение автомобиля на карте.
Функция Live Traffic предоставит водителям обновления о маршруте в режиме реального времени и поможет избежать загруженных дорог.
Ford будет использовать SIM-карты Vodafone и платформу Интернета вещей для обеспечения повышенной безопасности, диагностики и информационно-развлекательных сервисов для автомобилей по всей Европе. Плюс к этому Ford предложит услугу eCall, способную автоматически вызывать экстренные службы после аварии и сообщать местонахождение автомобиля, а также информацию о том, находится ли водитель в сознании.
Смотрите так же: AirMax ac для wi-fi сетей
Специалисты компании Panasonic Corp разработали технологию, получившую название "Contactless Vital Sensing" и позволяющую с достаточно высокой точностью измерить ритм сердцебиения человека, снятого на видео. Данная технология позволит дистанционным и бесконтактным образом определить нагрузку, испытываемую спортсменом или человеком, выполняющим тяжелую работу. Кроме этого, новая технология может стать частью системы дистанционного контроля состояния здоровья людей, находящихся в медицинских учреждениях или проходящих курс лечения в домашних условиях.
Измерение ритма сердцебиения основано на измерении коэффициента отражения кожи человека. Этот коэффициент изменяется на достаточно значительную величину вследствие периодического расширения кровеносных сосудов, которое, как легко догадаться, соответствует ритму биения сердца. "Ритм биения сердца можно определить не только по лицу человека, но и по любому участку тела, где видно открытую кожу" - пишут представители компании Panasonic, - "Просто по лицу это делать удобнее, так как оно, лицо, всегда находится в кадре".
Для работы технологии "Contactless Vital Sensing" не требуется использования какой-либо специальной камеры, Здесь вполне достаточно веб-камеры со средними возможностями и разрешающей способностью. "Тем не менее, даже средненькая веб-камера уже может обеспечить точность измерения ритма сердцебиения, сопоставимую с точностью медицинских приборов".
Руководство компании Panasonic планирует сделать технологию "Contactless Vital Sensing" коммерчески доступной в 2018 году. И в дополнение к ее использованию в спортивной области, данная технология может использоваться для контроля состояния сотрудников call-центров, в медицине и диагностике, в системах "умных" автомобилей, которые не дадут заснуть водителю, и в ряде других областей.
В пятом сезоне гонок электрических автомобилей Formula E, который начнется в конце 2018 года, поклонников этого вида спорта ожидает нечто интересное и удивительное. Это станет возможным благодаря контракту, в рамках которого французская компания Spark Racing Technology стала основным подрядчиком, который разработает и будет производить шасси для электрических гоночных автомобилей следующего поколения. И не так давно представители компании Spark Racing Technology опубликовали ряд фото, по которым можно судить, на что же именно будет похож их новый футуристический гоночный автомобиль.
Основным достоинством нового гоночного автомобиля станет его улучшенная аэродинамика и меньший вес. Так же стоит отметить наличие у него более емких и более эффективных аккумуляторных батарей и силовой электроники, что, в свою очередь, позволит автомобилю преодолевать большую дистанцию на одном заряде и разгоняться до максимально позволенной скорости, которая составляет сейчас 225 километров в час, за меньшее время.
Концепт, который вы видите на приведенных снимках, безусловно, пройдет через череду изменений, продиктованных "суровой реальностью", а более-менее законченную форму он начнет принимать ближе к сроку начала пятого сезона гонок Formula E. И, с большой долей вероятности, окончательный вариант автомобиля будет отличаться от представленного здесь концепта весьма и весьма значительно.
Как уже упоминалось выше, "изюминкой" концепта компании Spark Racing Technology является новая аккумуляторная батарея. Эта батарея разрабатывается сейчас совместными усилиями специалистов компаний McLaren, Sony и Atieva. По задумке разработчиков эта батарея, емкость которой составит порядка 56 кВт*ч, должна позволит автомобилю пройти всю гонку на одном заряде. Для сравнения, батареи, используемые в нынешнем поколении гоночных автомобилей, имеют емкость на уровне 25-28 кВт*ч и не способны обеспечить такое, из-за чего гонщики вынуждены делать остановки для их быстрой замены разряженных батарей на заряженные.
Представленный здесь концепт выглядит сейчас не очень броско, будучи окрашенным в однотонный цвет. Однако, его внешний вид кардинально изменится и станет намного "более живым" после того, как его корпус будет выкрашен в более яркий цвет, покрыт эмблемами многочисленных спонсоров и прочими рекламными надписями.
В свое время мы уже рассказывали нашим читателям, что в 2015 году ученым из университета Брауна удалось разработать технологию выращивания искусственного мини-мозга, имеющего сложную трехмерную структуру из переплетенных между собой нервных клеток нескольких типов. Такие искусственные образования представляют собой альтернативу лабораториям-на-чипе соответствующего типа и они позволяют проводить испытания новых методов лечения и действия лекарственных препаратов, не используя для этого подопытных животных. И, продолжая работать с выращенными мини-мозгами, исследователи обнаружили удивительный феномен, внутри некоторых из них со временем начала образовываться система кровеносных сосудов, что значительно расширяет область их использования и позволяет проводить исследования, связанные с инсультами, сотрясениями и болезнью Альцгеймера.
Каждый мини-мозг имеет размер менее одного миллиметра и их выращивают тысячами за один раз из образцов нервных клеток разных типов, взятых у живых лабораторных крыс. Эти мини-мозги, естественно, не могут обеспечить мыслительный процесс, но входящие в них нейроны являются электрически активными. Эти искусственные образования являются самой точной моделью реального мозга, и при их помощи ученые имеют возможность напрямую изучать процессы развития нервных клеток, последствия заболеваний и результаты действия новых лекарственных препаратов.
Но нейроны и синапсы - это только часть модели мозга. При работе мозг требует потока крови, которая снабжает его кислородом и питательными веществами, однако во всех типах искусственных мозгов, выращенных различными группами ученых, эта составляющая полностью отсутствовала. Во время своей работы ученые из университета Брауна заметили, что через некоторое время приблизительно в двух третьих искусственных мини-мозгов начали образовываться уплотнения нервных тканей, которые затем начали перерождаться в ткань кровеносных сосудов.
Сделанные снимки возникших образований позволили ученым идентифицировать тип новых клеток и связующих белков, которые оказались идентичными клеткам и белкам кровеносных сосудов, а сами образовавшиеся сосуды полы внутри и определенно предназначены для транспортировки крови. Составленная учеными карта кровеносной системы показала, что структура этой системы не столь плотна и разветвлена как кровеносная система реального мозга, ее сложность полностью соответствует малой сложности мини-мозга, который может существовать на протяжении всего одной-двух недель.
Получив в свое распоряжение такой "подарок", ученые уже начали использовать искусственные мини-мозги, подвергая их кислородному недостатку и недостатку глюкозы и наблюдая за тем, как все это затрагивает кровеносную систему. А в ближайшем времени ученые объединят мини-мозг с микрожидкостной системой, которая устроит нормальную перекачку крови по кровеносной системе, и это, в свою очередь, позволит им сымитировать инсульт и симптомы болезни Альцгеймера.
Современные голографические технологии пока еще неспособны воспроизводить реалистичные и высококачественные изображения так, как это демонстрируется нам в различных научно-фантастических фильмах. Однако, как говорится, "все течет и все меняется", и исследователям из корейского Института науки и передовых технологий (Korea Advanced Institute of Science and Technology, KAIST) уже удалось создать прототип динамического голографического дисплея нового типа, параметры которого в 2600 раз превышают параметры любого другого подобного дисплея, созданного ранее.
Основным ограничением, сдерживающим развитие голографических технологий, является то, что для создания трехмерного изображения матрица, состоящая из обычных двухмерных пикселей, должна обеспечивать вывод большего количества информации. В своей работе корейские исследователи использовали достаточно обычный высококачественный дисплей, а в качестве носителя дополнительной информации служил фронт оптического импульса, для создания которого использовался специальный модулятор. Такая комбинация, представляющая собой сложную систему управления направлением распространения света, позволила создать высококачественную голограмму в рабочем объеме первого варианта устройства, размер которого пока еще мал и составляет один кубический сантиметр.
Основой модулятора фронта импульса является зеркало, изготовленное из материала, обладающего способностью к деформации. Кроме зеркала в модуляторе используется пара рассеивающих устройств, направляющих свет во множество случайных направлений. Эти рассеивающие устройства призваны расширить угол обзора и размер создаваемого голографического изображения, но их использование имеет и отрицательный эффект, заключающийся в появлении "зернистости" и неравномерности трехмерного изображения.
Проблема зернистости изображения была решена при помощи специальной оптической модуляции, и в результате использования рассеивающих устройств ученым удалось создать голограмму, размером в два сантиметра по ширине, высоте и глубине. Разрешающая способность этого изображения приблизительно в 2600 раз превзошла разрешающую способность изображения, полученного в первом устройстве, не содержавшем рассеивателей света.
"Ранее считалось, что рассеивание света - это нежелательное явление, когда дело касается голографических устройств. Но мы продемонстрировали, что и этот эффект можно заставить работать на пользу дела при должном подходе" - рассказывает Йонгкеун Пак (YongKeun Park), профессор из KAIST, - "И за счет "правильного" использования рассеивания света нам удалось получить увеличенный угол обзора и разрешающую способность, превышающую в две с половиной тысячи раз аналогичные показатели любых созданных ранее голограмм".
Корейские ученые считают, что проделанная ими работа может стать первым шагом на пути к созданию больших и высококачественных голографических дисплеев, которые значительно облегчат жизнь медикам, инженерам и ученым. И, естественно, такие дисплеи смогут перевести индустрию компьютерных игр и развлечений на качественно новый уровень.
Область мягкой робототехники, о которой мы достаточно часто рассказывает нашим читателям, обладает огромным потенциалом в мире медицины, гибкие и эластичные робототехнические устройства в большей мере совместимы с мягкими органами тела человека, нежели чем устройства, конструкции которых изготовлены из жестких материалов. Самым подходящим видов материалов для мягких роботов являются гидрогели разного типа, и не так давно исследователям из Массачусетского технологического института удалось создать новый тип гидрогела, параметры которого выгодно отличают его от других подобных материалов. Для демонстрации возможностей нового материала исследователи изготовили из него прозрачного робота-невидимку, способного ловить и удерживать, правда, не очень большую, но живую рыбу в аквариуме.
"В большинстве случаев гидрогели представляют собой материалы с очень малой прочностью, они легко деформируются и разрываются даже при прикладывании к ним небольшого усилия" - рассказывает профессор Хуанхе Жао (Xuanhe Zhao), - "Мы же занимаемся поисками биологически совместимых гидрогелей, которые сохраняются все свои преимущества и одновременно обладают достаточно высокой механической прочностью. И на основе таких гидрогелей уже сейчас можно создавать устройства, приводимые в действие при помощи гидравлики".
Все гидрогелевое тело робота-невидимки пронизано сетью полостей, которая имеет определенную конфигурацию. Гидравлическая система устроена таким образом, что в определенные секции полостей можно накачивать воду. А комбинации наполненных и пустых секций позволяют телу робота сжиматься определенным образом, расправляться и совершать другие движения. О прочности нового гидрогелевого материала говорит то, что элементы, изготовленные из него, могут через несколько секунд развивать усилие, измеряемое несколькими ньютонами, в то время как другие материалы могут обеспечить усилие лишь на уровне десятков и единиц миллиньютонов.
Испытания прозрачного робота показали, что он способен не только работать в роли своего рода "невидимой удочки". При его помощи можно захватывать и удерживать достаточно массивные шары и объекты еще более сложной формы. Гидрогелевый материал способен выдержать без снижения своих прочностных характеристик до тысячи рабочих циклов, после чего он начинает разрываться, в нем возникают микроразрывы, которые постепенно увеличиваются со временем.
"Созданного из гидрогеля робота практически невозможно увидеть в воде, поскольку он сам на 99 процентов состоит из воды" - рассказывает профессор Жао, - "Он может поймать и удерживать живую рыбку, не нанося ни малейшего вреда ее хрупкому тельцу. А любой манипулятор, изготовленный из твердого материала, попросту раздавил бы ее"
"Такие роботы, состоящие преимущественно из жидкости и приводимые в действие той же жидкостью, могут успешно взаимодействовать даже с самыми нежными тканями органов человека" - рассказывает профессор Жао, - "Более того, гидрогелевый робот может быть изготовлен из материала естественного происхождения и наполнен жидкостью так же естественного происхождения, что сделает его полностью биологически совместимым с организмом пациента, который и станет источником материала и жидкостей. Останется только придумать наилучший метод управления и мы получим робота или имплантат, которые смогут оказывать неоценимую помощь работе органов человека".