Не так давно мы рассказывали нашим читателям о необычном художественном конкурсе RobotArt, в рамках которого оцениваются художественные работы, выполненные роботами под управлением людьми, роботами под управлением сложного программного обеспечения и систем искусственного интеллекта. В соревновании этого года приняло участие 38 команд из 10 разных стран, которые представили на суд общественности и жюри около 200 работ. И буквально на днях члены жюри конкурса определились со своим выбором и опубликовали список его победителей.
Победители конкурса определялись не только мнением жюри, в котором присутствовали профессиональные художники, критики и технологи. Значимый вес в этом деле имело мнение общественности, которое начинало учитываться после того, как в пользу того или иного художественного произведения высказывалось более 3 тысяч человек на специальной странице сервиса Facebook.
Итак, ниже мы представляем Вам десятку победителей конкурса RobotArt 2017, а с полным списком победителей, участников и их работами можно ознакомиться на официальном сайте конкурса.
Победитель - Winner - PIX18 / Creative Machines lab
Команда из Колумбийского университета, которая удостоилась первого места в конкурсе, использовала робота под названием PIX18. Это уже робот третьего поколения из серии, способной создавать оригинальные художественные произведения при помощи традиционных кистей и масляных красок.
2-е место - CMIT ReART
Система ReART для создания художественного произведения использует целый набор осязательных функций, пытаясь максимально подражать работе художника, рисующего картину. Система отслеживает положение кисти, силу нажатия и множество других параметров. Этот проект, созданный исследователями из университета Казетсат (Kasetsart University), Таиланд, был разработан в рамках более масштабного проекта, целью которого является создание технологий контроля и высокоточного управления робототехническими системами.
3-е место - CloudPainter
CloudPainter представляет собой одно из самых сложных устройств, работы которого приняли участие в конкурсе. Используя искусственный интеллект и технологии глубинного изучения, система CloudPainter во время работы принимает так много отдельных творческих решений, насколько это возможно. "А художник обычно принимает только одно единственное такое решение - решение приступить к началу рисования картины" - пишут исследователи.
4-е место - e-David
e-David представляет собой самообучающуюся автоматизированную художественную систему, которая использует визуальную обратную связь, позволяющую машине увидеть результаты своей деятельности и сравнить их с желаемым результатом. Это, в свою очередь, позволяет роботу, который является "умным" вариантом промышленного сварочного робота, исправлять допущенные им ошибки и проводить оптимизацию создаваемой картины.
5-е место - JACKbDU
Система JACKbDU была разработана специалистами из Шанхайского филиала Нью-Йоркского университета. Основным "действующим лицом" этой системы является мобильный робот, оснащенный специальными колесами, позволяющими ему передвигаться абсолютно в любом направлении. А результатами творчества этого робота являются "пикселизированные" изображения, размером 175 на 175 сантиметров.
6-е место -
Элон Маск (Elon Musk), основатель и руководитель таких компаний, как SpaceX и Tesla Motors, получил известность как человек, генерирующий и поддерживающий различные необычные идеи, некоторые из которых касаются создания футуристических транспортных систем. Одна из таких идей, идея системы Hyperloop, находится сейчас на стадии практической реализации, для нее уже разрабатывается конструкция пассажирской капсулы и ведется строительство экспериментального участка трубопровода, в котором будет поддерживаться низкое давление воздуха. И недавно Элон Маск опубликовал в сети видео, демонстрирующее его идею создания футуристической подземной транспортной системы, которую он собирается воплощать в жизнь силами принадлежащей ему недавно организованной компании Boring Company.
Основой будущей системы станут самоходные электрические транспортные тележки, которые будут выполнять роль лифтов, поднимающих и опускающих обычные автомобили в глубину туннельной системы. Туннельная система станет весьма разветвленной и по некоторым признакам она охватит весь район Лос-Анджелеса, города, который хорошо известен наличием в нем серьезных проблем с транспортом и уличным движением.
Опустившись в подземный туннель, транспортная тележка со стоящим на ней автомобилем вливается в поток, движущийся в нужном направлении со скоростью 200 километров в час. Пока еще не ясно, какие принципы движения будут использованы в данной системе, но, зная Элона Маска, можно предположить, что это будет нечто сверхвысокотехнологичное типа рельс с магнитной левитацией. По достижению конечной точки подземного перемещения тележка с автомобилем поднимается на поверхность, и автомобиль следует далее своим ходом.
Помимо обеспечения передвижения легковых автомобилей с находящимися внутри них людьми, новая транспортная система сможет обеспечивать передвижение общественного транспорта. Конечно, она не сможет перемещать большие городские автобусы, для этого будет использоваться малые транспортные средства, способные перевозить десяток-другой пассажиров за один раз.
Конечно, дело практического создания такой системы затянется не на один год или даже десятилетие. Но Элон Маск уже начал работать в данном направлении. Прямо сейчас при помощи 1200-тонной бурильной машины, длиной 120 метров, получившей название "Nannie", идет прокладка испытательного участка туннеля, располагающегося под штаб-квартирой компании SpaceX в Хоуторне, Калифорния.
Пока еще неясно, какими путями Элон Маск планирует добиться получения разрешения на строительство столь масштабной системы, которая затронет практически все области инфраструктуры Лос-Анджелеса. Но если и кто может сделать, так это он, человек, обладающий миллиардным состоянием, оказывающий огромное влияние на аэрокосмическую отрасль со своими ракетами многоразового использования, и являющийся одним из главных игроков на поле электрических автомобилей, способных к самостоятельному передвижению.
В своем выступлении на конференции TED 2017, Том Грубер (Tom Gruber), один из руководителей компании Apple Inc., приложивший свою руку к созданию системы-помощника Siri, продемонстрировал еще одну возможность использования систем искусственного интеллекта. С его точки зрения искусственный интеллект сможет стать в будущем чем-то вроде "расширителя" памяти человека, который станет неоценимым помощником и поможет человеку преодолеть некоторые недостатки, обусловленные его физиологией.
Том Груббер отмечает, что, благодаря широкому использованию различных интернет-технологиий и распространенности устройств типа смартфонов и планшетных компьютеров, в сети уже сейчас находится достаточно большое количество информации, касающейся каждого конкретного человека. И специализированная система искусственного интеллекта, способная собрать все данные о человеке, может стать "резервной памятью" человека, который начинает терять воспоминания вследствие болезни Альцгеймера или склероза, к примеру.
Но не только пожилые люди и люди с отклонениями смогут поиметь выгоду от использования искусственного интеллекта в ипостаси, предлагаемой Томом Груббером. "Сверхинтеллект может дать человеку сверхспособности" - рассказывает Груббер, - "Поскольку создаваемые нами машины становятся более умными, мы тоже становимся такими же. Внедрение искусственного интеллекта позволит создать "команду" с человеком, каждый из членов которой будет прилагать все усилия к достижению целей или удовлетворению потребностей человека. И вопрос "насколько умными мы можем сделать наши машины?" уже должен звучать несколько по-иному, "Насколько умными могут сделать нас наши машины?"".
"Я не могу еще сказать, сколько времени и что именно потребуется для создания симбиоза искусственного интеллекта и человека. Но я считаю, что момент появления такого симбиоза наступит неизбежно" - рассказывает Том Груббер, - "Что если бы Вы могли иметь память, столь же хорошую, как компьютерная память? К примеру, вы смогли бы помнить каждого человека, которого вы когда-либо встречали, его имя, его интересы и даже точное содержание вашего последнего разговора".
Идеи, высказанные Томом Грубером, достаточно сильно перекликаются с идеями, высказанными в свое время Реем Курцвейлом (Ray Kurzweil), известным футурологом. "Как только нам удастся реализовать полноценные модели и алгоритмы машинного изучения и самообучения, наши машины станут способны к распознаванию образов, к выработке решений, и обретут другие качества человека. Только при этом они смогут использовать все преимущества своей компьютерной природы - скорость поиска и обработки информации, огромные объемы памяти и возможность быстрого обмена знаниями с другими
В настоящее время специалисты исследовательской группы компании Google, занимающейся практической реализацией технологий квантовых вычислений, уже имеют в своем активе опытный образец квантового процессора с шестью кубитами, организованными в две группы по три кубита. Согласно информации, предоставленной Джоном Мартинисом (John Martinis), главой вышеупомянутой группы, уже к концу этого года они собираются построить новое квантовое устройство, возможности которого уже перешагнут так называемый барьер "квантового превосходства", барьер, после которого производительность квантовой системы на некоторых специализированных задачах будет находиться далеко за пределами возможностей любого из существующих суперкомпьютеров.
Опытный шестикубитный квантовый чип стал своего рода полигоном для отработки технологий изготовления кубитов, организации связей между ними и интерфейсов между квантовым и окружающим миром обычной физики. Разработки всех этих технологий были начаты около двух лет назад и сейчас в распоряжении специалистов компании имеются "правильные" методы изготовления кубитов, их установки друг относительно друга и многое другое. "Нам еще предстоит проделать некоторый объем работы, в частности в области расположения кубитов так, как они будут располагаться на чипах крупномасштабных квантовых систем" - рассказывает Джон Мартинис, - "Но все разработанные нами процессы работают должным образом и мы готовы к совершению резкого качественного скачка. Этим скачком станет создание систем с 30-50 кубитами, работы над которыми уже ведутся в настоящее время".
Сейчас исследовательская группа, в состав которой входит 25 человек, проводит заключительные проверки некоторых конструктивных особенностей будущей квантовой вычислительной системы, в частности, линейного расположения цепочек кубитов, из которых потом будет собрана их двухмерная матрица. И, согласно планам, эта система должна обрести законченный вид не позднее конца этого года.
Согласно некоторым теориям из области квантовых вычислений системы, которые смогут перешагнуть барьер квантового превосходства, должны содержать минимум 50 кубитов. А при большем количестве кубитов такие системы уже будут способны к решению столь сложных задач, которые невозможно решить в приемлемые сроки традиционными системами любой производительности. С этой точки зрения будущий процессор компании Google можно рассматривать как демонстрационную систему, но с другой точки зрения, этот процессор станет огромным шагом к появлению реальных универсальных квантовых компьютеров, которые смогут стать именно тем средством, которое обеспечит рывок вперед технологического развития человечества в целом.
Представители французского Национального центра космических исследований (National Centre for Space Studies, CNES) недавно объявили о том, что они, совместно с японским Агентством исследований космоса (Japan Aerospace eXploration Agency, JAXA), планируют реализовать миссию, в ходе которой на поверхность Фобоса, спутника Марса, совершит посадку исследовательский космический аппарат. Этот аппарат проведет на Фобосе ряд исследований, наблюдений и соберет там образцы, которые впоследствии планируется доставить на Землю для более тщательного изучения и поиска ответов на некоторые фундаментальные вопросы.
В понедельник на прошедшей неделе между Парижем и Токио было подписано предварительное соглашение, а окончательное решение о реализации проекта под названием Martian Moons Exploration будет принято не позднее конца этого года. Согласно имеющимся планам, запуск космического аппарата миссии может быть произведен в 2024 году, а целью миссии является Фобос, самый большой и самый близкий к планете спутник Марса.
"Эта миссия имеет особо важное значение из-за того, что она станет первой, в ходе которой на Землю будут доставлены образцы, полученные в районе другой планеты Солнечной системы" - рассказывает Жан-Ив Ле Галл (Jean-Yves Le Gall), президент CNES.
Напомним нашим читателям, что Фобос является самым большим спутником Марса. Он имеет немного сплюснутую форму, а его размер по самой длинной стороне составляет 27 километров. Ученые уже давно спорят относительно происхождения Фобоса, одни ученые считают, что он представляет собой захваченный гравитацией Марса астероид, а другие - что Фобос является естественным спутником, подобным Луне, сформировавшимся из остатков материала, оставшегося после формирования основной планеты. И лишь подробный анализ химического состава материала Фобоса может дать более-менее точный ответ на этот вопрос.
Посадка космического аппарата на поверхность Фобоса даст ученым возможность наблюдать за Марсом с относительно небольшого расстояния, с расстояния в 6 тысяч километров, разделяющих Фобос и Марс. Отметим, что Фобос является самым близким к своей планете в Солнечной системе спутником, и он продолжает сближаться с Марсом со скоростью 2 метра за 100 лет. Это приведет к тому, что через 30-50 миллионов лет, которые являются мгновением по космическим масштабам времени, Фобос разрушится под воздействием сил гравитации Марса, которые уже сейчас оказывают на него существенное влияние.
И в заключении следует напомнить нашим читателям, что предыдущая попытка совершения посадки на поверхность Фобоса закончилась неудачей, практически и не начавшись толком. Запущенный в космос в 2011 году российский аппарат "Фобос-Грунт" перестал функционировать практически сразу после запуска. Попытки связи и восстановления работоспособности этого аппарата закончились неудачей и, спустя два месяца, обломки этого аппарата упали в воды Тихого океана.
Представители хорошо известной в определенных кругах словацкой компании AeroMobil объявили о том, что буквально на следующей неделе будет произведен запуск производства первых серийных летающих автомобилей, которые можно будет зарегистрировать в соответствующих органах, и которым будет позволено передвигаться по дорогам общего назначения. Новый летающий автомобиль, AeroMobil 3.0, будет представлен общественности на мероприятии Top Marques, которое пройдет в Монако 20 апреля этого года. А заинтересованные в нем люди смогут оформить предварительный заказ чуть позже в этом году.
Летающий автомобиль AeroMobil достаточно далек от идеального варианта, летательного аппарата с вертикальным взлетом и посадкой, который сможет взлетать и садиться на лужайку перед вашим домом. Передвигаясь по дорогам традиционным для автомобиля способом, его владелец будет должен добраться до ближайшего специализированного аэродрома. Взлетев с полосы этого аэродрома автомобиль AeroMobil должен совершить посадку на таком же аэродроме, ближайшем к месту назначения и добраться до этого места снова в "автомобильном режиме".
По дорогам футуристический летающий автомобиль AeroMobil передвигается, сложив свои крылья назад. В таком режиме габариты автомобиля ненамного превышают габариты среднего пикапа. Место водителя-пилота заполнено дисплеями, индикаторами и элементами управления. С этой точки зрения кабина автомобиля AeroMobil 3.0 больше напоминает кабину самолета, нежели водительское место обычного автомобиля.
Несмотря на обилие элементов управления, система рассчитана на то, чтобы максимально упростить процесс управления, вождения или пилотирования этого транспортного средства. К примеру, процесс складывания крыльев и перераспределения тяги двигателя осуществляется путем нажатия всего одной кнопки. Для того, чтобы управлять автомобилем AeroMobil, его владельцу потребуются традиционные водительские права и лицензия пилота. Минимальной лицензией является лицензия пилота спортивного самолета, но компания AeroMobil рекомендует будущим владельцам получить лицензию пилота частного самолета, класс которой несколько выше.
Окончательная цена, которую предстоит заплатить всем, кто хочет получить летающий автомобиль AeroMobil в свое распоряжение, станет известна только после 20 апреля. Но по некоторым прикидкам она будет исчисляться "несколькими сотнями тысяч евро".
Группа ученых и инженеров из Венского Технологического университета, Австрия, создала то, что можно назвать самым сложным на сегодняшний день микропроцессором, изготовленным из плоского двухмерного материала. На кристалле этого чипа находится 115 транзисторов, изготовленных из тончайшей, толщиной в три атома, пленки молибденита, дисульфида молибдена (MoS2). Активный слой чипа этого микропроцессора имеет толщину в шесть десятых нанометра, в то время, как толщина активного слоя обычных кремниевых чипов составляет минимум 100 нанометров.
Ученые надеются, что использование в чипах двухмерных материалов, таких, как графен и молибденит, позволит закону Гордона Мура продержаться еще достаточно долгое время. Графен является превосходным электрическим проводником, что делает его идеальным вариантом для изготовления соединений между компонентами чипа, а молибденит является полупроводником, из которого можно изготавливать элементы транзисторов и других электронных компонентов.
До последнего времени сложность электронных устройств, изготовленных из двухмерных материалов, была невысока, обычно схемы этих устройств содержали по нескольку экземпляров транзисторов. Новое же устройство, созданное учеными из Вены, содержит 115 транзисторов, размещенных на кремниевой подложке. Но, в принципе, схему этого простейшего микропроцессора можно было создать и на поверхности гибкого полимерного основания.
Несмотря на малое количество транзисторов, "плоский" микропроцессор способен выполнять написанные людьми программы, хранящиеся во внешней памяти, производя логические операции над данными и передавая результаты работы на периферийные устройства. Опытный микропроцессор способен выполнять операции только с одним битом данных в каждый момент времени, но архитектура микропроцессора является масштабируемой и без особых затруднений в будущем можно будет создать более сложное устройство, оперирующее данными с большим количеством битов.
Расход энергии "плоским" процессором составляет около 60 микроВатт при работе на таковых частотах от 2 до 20 килоГерц. "С точки зрения производительности наше устройство не идет ни в какое сравнение с нынешними кремниевыми процессорами" - пишут исследователи, - "Тем не менее, оно является первым шагом к созданию электронных устройств нового поколения".
Самый маленький элемент структуры чипа "плоского" микропроцессора имеет размер около 2 микрометров. Тем не менее, ученые считают, что переход к элементам и транзисторам с длиной канала от 100 до 200 нанометров не должен вызвать никаких затруднений, ведь для производства "плоской" электроники используются те же самые методы, что и для производства обычной кремниевой электроники. Улучшив в будущем качество соединительных контактов и уменьшив размеры элементов транзисторов до 1 нанометра можно будет добиться резкого увеличения плотности и быстродействия чипов процессоров.
К сожалению, массовое производство чипов с транзисторами из молибденита в настоящее время невозможно из-за отсутствия технологии производства высококачественной пленки этого материала. Наличие дефектов в изготавливаемых пленках обуславливает то, что работоспособными являются лишь пять процентов от общего количества изготовленных транзисторов. Венские ученые пытаются решить эту проблему путем разработки технологии выращивания молибденитовой пленки прямо на поверхности целевой сапфировой подложки, что позволит устранить сложные и дорогостоящие этапы отдельного выращивания пленки и прикрепления ее к поверхности подложки.
Кроме вышеупомянутой проблемы, для того, чтобы начать всерьез думать об чипах с сотнями миллионов "плоских" транзисторов, будет необходимо перейти от технологии металлооксидных полупроводников n-типа (NMOS) к более традиционной и менее требовательной к количеству энергии КМОП-технологии (CMOS). "Такой переход потребует использования иного двухмерного полупроводникового материала" - пишут исследователи, - "Но у нас уже имеется несколько подходящих кандидатов, в частности, диселенид вольфрама".
Известно, что на самом маленьком уровне, на уровне субатомных частиц, законы классической физики переостают работать и все происходящее начинает подчиняться законам загадочной квантовой механики. Некоторые из этих законов уже изучены в достаточной степени, и это позволяет ученым с достаточно большой прогнозировать поведение квантовых частиц, таких, как запутанные фотоны света. Однако, результаты исследований, проведенных учеными из университета Восточной Англии (University of East Anglia, UEA), Великобритания, указали на то, что крошечные частицы света в некоторых случаях могут вести себя таким образом, что это не вписывается в рамки существующей квантовой теории.
Ученые занимались исследованиями квантового процесса непосредственного параметрического преобразования (spontaneous parametric down-conversion, SPDC). В этом процессе луч света проходит сквозь специальный кристалл, в результате чего получаются пары запутанных на квантовом уровне фотонов. Напомним нашим читателям, что запутанные квантовые частицы являются связанными, принудительное изменение квантового состояния одной из частиц вызывает изменение состояния второй частицы, несмотря на то, что их может разделять сколь угодно большое расстояние.
Согласно имеющейся квантовой теории запутанными становятся только те фотоны, которые прошли через одну и туже область (точку) кристалла. Однако, ученые обнаружили, что запутанными могут стать и фотоны, прошедшие через области кристалла, разделенные достаточно большим расстоянием. "Запутанные фотоны могут появиться из областей кристалла, которые отдалены друг от друга на сотые части микрометра" - рассказывает профессор Дэвид Эндрюс (David Andrews), - "С точки зрения существующей квантовой теории такие фотоны не могут стать запутанными, ведь они "родились" очень далеко друг от друга на атомарном уровне".
Запутанные фотоны, пойманные в специальных ловушках, являются одними из основных элементов будущих квантовых компьютеров, компьютеров, обладающих гораздо большей вычислительной мощность, нежели даже самые мощные современные суперкомпьютеры. Однако нестыковка в квантовой теории, связанная с возникновением пар запутанных фотонов, может оказать не очень хорошее влияние на дизайн будущих квантовых вычислительных систем, ведь она вносит дополнительную погрешность в работу отдельных квантовых компонентов.
"Мы показали, что фотоны света не являются "твердыми пулями", поведение которых можно определить с достаточной точностью" - рассказывает Дэвид Эндрюс, - "И разработчики будущих квантовых фотонных вычислительных систем должны учитывать неопределенности, которые могут возникнуть в результате непредсказуемого поведения фотонов".
Буквально вчера мы рассказывали о том, что небезызвестная компания SpaceX произвела успешный повторный запуск и посадку первой ступени ракеты-носителя Falcon 9, которая уже была использована ранее. Это достижение является началом новой эры многократного использования ракет-носителей, что сулит в перспективе кардинальное снижение стоимости космических запусков. Но во время пресс-конференции, проведенной после запуска миссии SES-10, Элон Маск, основатель и руководитель компании SpaceX, сообщил об еще одном достижении компании, Оказывается, помимо первой ступени ракеты им удалось посадить за Землю еще одну достаточно дорогостоящую часть ракеты - ее носовой обтекатель.
Носовой обтекатель служит для защиты полезного груза, коммуникационного спутника SES-10 в данном случае, во время запуска. Обтекатель имеет внешний диаметр 4.9 метра и его внутреннего объема достаточно для того, чтобы спрятать внутри его небольшой автобус. Стоимость изготовления одного обтекателя составляет 6 миллионов долларов. "И, вместо того, чтобы позволить ему врезаться в землю и разбиться на миллион крошечных частей" - рассказывает Элон Маск, - "Мы использовали небольшие реактивные двигатели и систему парашютов для плавного возврата на землю двух половинок обтекателя, которые после этого можно будет использовать повторно".
"Обтекатель очень похож на небольшой космический корабль" - рассказывает Элон Маск, - "К сожалению, нам удалось опустить неповрежденной только одну из его половинок".
Получается, что единственной частью ракеты-носителя Falcon 9, которая теряется сейчас безвозвратно, является ее вторая ступень, самостоятельная небольшая ракета, которая служит для вывода полезного груза на расчетную орбиту после того, как это все поднимается на промежуточную орбиту первой ступенью. В настоящее время специалисты компании SpaceX рассматривают несколько вариантов, которые в будущем позволят возвращать и повторно использовать и вторую ступень также.
И в заключении следует отметить, что каждый запуск, производимый сейчас компанией SpaceX, обходится заказчикам в 62 миллиона долларов. Повторное использование основных узлов ракет-носителей позволит на первом этапе сократить эту сумму на 30 процентов. "Я уверен, что в перспективе мы сможем добиться и 100-кратного сокращения стоимости каждого запуска, только для этого нам придется разработать и провести испытания целого ряда новых инженерных решений" - рассказывает Элон Маск.
[показать]
Около трех десятилетий назад, 23 февраля 1987 года, ученые-астрономы зафиксировали самый яркий за 400 последних лет взрыв сверхновой звезды. Эта колоссальная сверхновая, получившая название Supernova 1987A (SN 1987A), создала вспышку, которая освещала космос следующие несколько месяцев с яркостью, в миллион раз превышающей яркость свечения Солнца. И, начиная с момента обнаружения, эта сверхновая, расположенная в недрах галактики Большого Магелланова Облака, демонстрирует астрономам не прекращающееся удивительное световое шоу.
Сверхновая SN 1987A является самым близким к нам взрывом сверхновой, что дает возможность ученым-астрономам и астрофизикам изучить все происходящие там процессы в мельчайших подробностях. Наблюдения за сверхновой SN 1987A производились неоднократно телескопом Hubble с 1990-го года, рентгеновская обсерватория Chandra начала наблюдения за ней с момента ввода обсерватории в строй в 1999 году, а самый мощный и современный радиотелескоп ALMA, состоящий из 66 параболических антенн, начал наблюдать за сверхновой SN 1987A раньше, чем состоялся его официальный ввод в эксплуатацию.
Последние данные, собранные самыми мощными и современными астрономическими инструментами, указывают на то, что в "жизни" сверхновой SN 1987A наступил очень важный момент. Немногим ранее ударная волна взрыва сверхновой столкнулась с плотным газовым кольцом, материя которого была извергнута в космос умирающей звездой за некоторое время перед взрывом. А сейчас замедлившийся поток раскаленного газа начинает сталкиваться с медленным потоком "звездного ветра", который был порожден красной гигантской звездой в ранние периоды ее развития и существования.
Столь мощные взрывы сверхновых, такие как SN 1987A, "взбаламучивают" и перемешивают облака космического газа, в которых образуются области, внутри которых начинают идти процессы формирования новых звезд и планет. Кроме этого, они, эти взрывы сверхновых, разносят по космосу тяжелые химические элементы, такие, как углерод, азот, кислород и другие, которые были выработаны в недрах термоядерного реактора красной гигантской звезды за все время ее существования. В случае особо мощных взрывов эти химические элементы рассеиваются по всему объему галактики, обогащая ее элементами, которые составляют основу всех известных нам форм жизни.
Снимки, сделанные телескопом Hubble, показывают, что плотное кольцо газа вокруг сверхновой, диаметром около одного светового года, интенсивно светится в оптическом диапазоне. Это кольцо образовалось, по крайней мере, за 20 тысяч лет до момента взрыва, а светится оно под воздействие ультрафиолетового света от вспышки сверхновой, который возбуждает атомы межзвездного космического газа.
Центральная часть сверхновой, находящаяся внутри кольца газа, выросла за все время до размеров в половину светового года. Самыми интересными объектами являются две огромных "капли" звездных останков, которые удаляются от центра и друг от друга со скоростью порядка 32.2 миллиона километров в час.
В период с 1999 по 2013 год, обсерватория Chandra отслеживала расширяющееся кольцо рентгеновского излучения, которое со временем становилось все ярче и ярче. Это происходило в результате воздействия взрывной ударной волны, которая перемещалась и энергия которой нагревала газ до такой температуры, что он начинал излучать в рентгеновском диапазоне.
Но за последние несколько лет кольцо рентгеновского излучения прекратило увеличивать яркость. Начиная с февраля 2013 года, и по сентябрь 2015 яркость рентгеновского излучения оставалась практически неизменной. А чуть позже астрономы заметили то, что внутренние части "рентгеновского кольца" в его левой нижней области начали исчезать. Все эти изменения говорят о том, что взрывная ударная волна уже переместилась в область с малой концентрацией межзвездного газа, где эффекты ее влияния проявляются не столь сильно. И этот этап является самым последним этапом взрыва сверхновой SN 1987A.
В настоящее время астрономы продолжают искать

С 1945 по 1962 год США провели больше 200 ядерных испытаний в атмосфере, чтобы в полной мере изучить силу ядерного оружия. Эти ужасающие взрывы снимались под любым возможным углом и со всех расстояний. Затем фильмы — а их было около 10 000 — сохранялись в сверхсекретных хранилищах, разбросанных по всей стране. И вот, впервые в истории, около 4200 этих фильмов были отсканировали и еще 750 — рассекречены американским правительством. 60 из них можно посмотреть на YouTube. Некоторые в цвете, некоторые черно-белые, у всех — причудливые названия сверхсекретных миссий: операция «Пламббоб», операция «Чайник» и др.
Руководит проектом физик-ядерщик Национальной лаборатории Лоуренса Ливермора (LLNL) Грег Сприггс, который надеется сохранить фильмы, проанализировать заново и выжать из них каждый бит данных. На самом деле, мы ведь многого еще не знаем о последствиях высотных ядерных взрывов, и сейчас они запрещены Договором о всеобъемлющем запрещении ядерных испытаний. Публикуя фильмы и анализируя их, Сприггс надеется помочь другим физикам, обладающим ядерным оружием, больше узнать о ядерных взрывах.
«У нас нет никаких экспериментальных данных по современному оружию в атмосфере», говорит Сприггс. «Единственные данные, которые у нас есть, это старые испытания, поэтому все не так просто».
За последние пять лет Сприггс проанализировал около 400-500 фильмов. Очень важно их оцифровать, потому что все они сделаны на основе ацетата целлюлозы, который разлагается со временем. «Вы слышите запах уксуса, когда открываете банки», говорит он. «Мы знаем, что эти фильмы находятся на грани разложения и вот-вот станут бесполезными».
Рассекречивание фильмов — это «огромное бюрократическое мероприятие», пишет Сара Чжан в Wired. Для каждого фильма Сприггсу нужно заполнить
Если вам известно, что ДНК представляет собой генетический код, результатом выполнения которого является жизнь, то вам будет нетяжело представить, что при помощи ДНК можно производить другие вычисления и решать другие задачи. Идея использования ДНК для создания молекулярных ДНК-компьютеров была выдвинута еще в 1984 году, такие компьютеры, за счет особенностей их структуры и функционирования, могут справиться с решением определенных задач гораздо быстрее и эффективней обычных компьютеров. Помимо этого ДНК обладает целым рядом преимуществ по сравнению с кремнием, она имеет очень малые размеры, молекулы ДНК отличаются высокой стабильностью и могут оставаться в изначальном виде в течение очень долгих промежутков времени.
Группе ученых из Манчестерского университета, возглавляемой профессором Россом Д. Кингом (Ross D. King), удалось создать новое вычислительное устройство на базе молекул ДНК. Данное достижение является не только одной из демонстраций самой возможности, его главной особенностью является то, что созданный учеными ДНК-компьютер является самореплицирующимся, способным увеличивать собственную вычислительную мощность в случае такой необходимости. Если, к примеру, для решения определенной задачи традиционному компьютеру будет требоваться произвести миллион вычислений, то ДНК-компьютер в таком же случае сможет сделать миллион копий самого себя и выполнить задачу с большей эффективностью.
"Представьте себе, что перед компьютером стоит задача поиска выхода из лабиринта, и он добрался до очередной развилки" - рассказывает профессор Кинг, - "Традиционному компьютеру потребуется пойти сначала по одному пути и вернуться назад в случае неудачи. ДНК-компьютер же, в этот момент, может создать еще одну копию, которая пойдет по второму пути, в то время, как изначальный компьютер начнет двигаться по первому. И, совсем несложно догадаться, какой из компьютеров справится с такой задачей быстрее".
Не стоит ожидать, что в скором времени вы сможете играть в одну из компьютерных игр, смотреть видео или бороздить просторы Интернета, а в недрах процессора вашего компьютера для этого будет работать множество цепочек молекул ДНК. Такие биологические ДНК-компьютеры предназначены для выполнения совершенно иных задач. Их делом в будущем будет являться борьба с инфекциями, к примеру, "починка" организма человека и, возможно, обработка огромных массивов разнородной и разноплановой информации.
Конечно, работа, проделанная учеными из Манчестерского университета, является лишь началом длинного и сложного пути по еще совершенно неизученной области науки. Тем не менее, этот путь рано или поздно должен привести к созданию эффективных вычислительных устройств, которым будет по плечу быстрое решение задач любой степени сложности.
Представители известной аэрокосмической компании Airbus недавно представили вниманию широкой общественности разработанный компанией концепт футуристического персонального транспортного средства под названием Pop.Up. Его главной отличительной чертой от всего остального является то, что это транспортное средство легко трансформируется из автомобиля в летательный аппарат и обратно, выбирая под управлением системы искусственного интеллекта самый оптимальный вид движения, гарантирующий минимальное время прибытия в конечную точку.
Транспортное средство Pop.Up состоит из трех базовых компонентов. Первым и основным компонентом является пассажирская кабина, которая по размерам сопоставима с кабиной миниатюрных малолитражных автомобилей. Эта кабина, называемая компанией Airbus пассажирской капсулой, может быть установлена на самоходном шасси, что превращает все это в самоуправляемый автомобиль-робот. Однако, в случае необходимости движения по воздуху, пассажирскую капсулу может подхватить большой квадрокоптер, который, доставив ее в место назначения, снова поставит ее на автомобильную платформу.
Во время движения, как по поверхности, так и по воздуху, транспортные средства Pop.Up могут объединяться в авто- или своего рода летающие поезда. Это позволит снизить нагрузку на систему искусственного интеллекта, которая управляет движением всех транспортных средств. При таком подходе достигается максимальная эффективность управления, что проявляется в виде отсутствия заторов, как на дорогах, так и в воздухе.
К разработке концепта Pop.Up руководство компании Airbus привлекло специалистов известной итальянской дизайнерской компании Italdesign, которая в свое время разработала ряд проектов и концептов для таких гигантов автомобилестроения, как Volkswagen, BMW, Alfa Romeo и других. Естественно, что практическое воплощение концепта Pop.Up в ближайшее время будет возможным только где-нибудь в среде одной из компьютерных игр. Но, с учетом темпов развития современных технологий, ждать появления чего-то подобного в реальном мире придется не очень долго.
Медицинские устройства с батарейным питанием, имплантируемые в тело человека, уже спасли огромное количество человеческих жизней. Кардиостимуляторы, вырабатывающие слабые электрические импульсы, задают стабильный ритм биения сердца у людей с аритмией, а крошечные дефибрилляторы, генерирующие уже более мощные импульсы, позволяют избежать сердечных приступов и полной остановки сердца в некоторых случаях. Однако, у таких устройств имеется и отрицательная черта - их элементы питания требуют периодической замены, что связано с риском занесения инфекции или с проведением хирургических операций.
Махди Киани (Mehdi Kiani), ученый из Пенсильванского университета, и его группа работают над тем, чтобы сделать электронные имплантируемые устройства меньших размеров и имеющие некоторые функциональные особенности, позволяющие избавиться от необходимости замены их батарей. "Сейчас мы разрабатываем новые методы беспроводной передачи энергии и технологии интегрированного управления электропитанием" - рассказывает Махди Киани, - "А размеры, до которых мы стараемся сократить размеры электронных устройств, составляют миллиметр или меньше, что также сопряжено с массой проблем технического плана".
Одной из ключевых технологий, разработка которой почти уже завершена, является технология адаптивного интегрированного управления электропитанием, работающая в режиме комплексного регулирования тока и напряжения. Такой режим обеспечивает более эффективное использование дефицитной энергии, нежели более традиционные способы, основанные только на управлении входным и выходным напряжением. И возможностей новой технологии управления электропитанием должно хватать для приведения в действие крошечных устройств, снабжаемых энергией при помощи беспроводных технологий.
Новые устройства, которые можно поместить практически в любую часть тела человека, смогут собирать и передавать наружу данные о состоянии различных органов, что даст медикам более полную картину о состоянии здоровья человека. Кроме этого, нечто подобное может быть использовано и для сбора данных из недр мозга человека, что позволит ученым глубже изучить функции мозга, установить причины некоторых заболеваний и найти новые эффективные методы борьбы с ними.
Международная космическая станция скоро получит еще несколько новых автоматических "членов экипажа", роботов Astrobee. Astrobee - это робот кубической формы, в недра которого достаточно плотно упакованы различные датчики, камеры, компьютеры и двигательная установка, а предназначен он для оказания посильной помощи астронавтам при выполнении на борту космической станции задач из достаточно широкого ряда.
Помощь астронавтам робот сможет оказать при помощи своей небольшой автоматизированной "руки", снабженной захватом, который может удерживать небольшие предметы и инструменты. Кроме этого, компьютерная система робота обеспечит астронавтов возможностью коммуникаций друг с другом и снабдит их всесторонней справочной информацией, имеющей отношение к выполняемым работам.
Прежде чем отправиться в космос, роботы Astrobee проходят через программу всесторонних испытаний на Земле, в стенах Исследовательского центра НАСА имени Эймса в Калифорнии. В настоящее время один из роботов установлен на своего рода салазках, в которых используется поток нагнетаемого под давлением углекислого газа, который для снижения сил трения создает воздушную подушку между поверхностью пола помещения и полированной поверхностью низа салазок. Это позволяет исследователям смоделировать условия микрогравитации в двух измерениях, выполнить проверку работы двигательной и навигационной систем робота, моделируя реальные ситуации, с которыми ему придется столкнуться в космосе.
Руководство НАСА планирует, что роботы Astrobee отправятся на борт Международной космической станции в промежутке между июлем 2017 и июнем 2018 года. Всего на космическую станцию прибудет три экземпляра таких роботов, два из которых будут находиться в активном состоянии, а третий будет находиться в резерве на всякий непредвиденный случай.
Глядя на все усилия, предпринимаемые людьми в направлении изучения других планет, возникает вопрос, почему почти все эти усилия сосредоточены на Марсе? Ведь Венера находится гораздо ближе к Земле, нежели Марс? Однако Венера, этот "адский шарик", имеет поверхность, еще более горячую, чем Меркурий, окруженную плотной и кислотной атмосферой. В таких условиях, как показала практика, ни одно электронное устройство не сможет проработать дольше нескольких часов. Но ученым из НАСА, похоже, удалось найти решение данной проблемы.
Напомним нашим читателям, что последним космическим аппаратом, опущенным на поверхность Венеры в 1982 году, стал советский аппарат, которому удалось проработать там около двух часов. Однако, если на свет появятся процессоры и другие чипы, способные функционировать при температуре более 400 градусов Цельсия, то на Венеру можно будет опустить даже венероход, который сможет там действовать в течение длительного времени.
Как уже упоминалось выше, основными факторами, препятствующими длительной работе электроники на поверхности Венеры, являются высокая температура и огромное давление. Подавляющее большинство современных чипов изготавливаются из кремния, который при высокой температуре теряет полупроводниковые свойства и начинает вести себя, как простой проводящий материал. Заменой кремнию в высокотемпературных чипах стал карбид кремния, которые сохраняет полупроводниковые свойства при высокой температуре, кроме этого, в чипе использованы электрические проводники из экзотических материалов, к примеру, силицида тантала, которые могут выдержать не только высокую температуру, но и продолжать работать в химически агрессивной окружающей среде.
При помощи ряда разработанных ими технологий исследователи создали опытный образец чипа, который был помещен внутрь экспериментальной установки Glenn Extreme Environments Rig (GEER), позволяющей с высокой точностью смоделировать условия на поверхности Венеры. Новому "венеростойкому" чипу удалось сохранить работоспособность на протяжении более чем трех недель, и этот срок мог стать еще большим, если бы ученые решили продолжить эксперимент.
То, что новый чип сумел сохранить свою работоспособность в столь сложных условиях, еще не означает, что данная технология уже готова к практическому применению. На опытном образце чипа была лишь сформирована простая схема обработки сигнала, состоящая всего из 24 транзисторов. "По степени сложности чипа мы находимся сейчас на уровне 1070-х годов" - пишут ученые, - "Но мы уже закончили разработку чипов с сотней транзисторов на кристалле, а в истории имеется ряд случаев успешных исследований космоса с чипами и меньшей сложности. Тем не менее, нам еще предстоит разработка простого процессора, который сможет управлять на примитивном уровне аппаратом, действующим на поверхности Венеры".
"Никому еще не удавалось сделать сложные электронные схемы, способные работать при столь высокой температуре и агрессивных условиях в течение длительного времени. И мы надеемся, что наша работа сделает возможным более тщательное изучение самой близкой к Земле планеты Солнечной системы".
Группе ученых, возглавляемой Иоганнесом Финком (Johannes Fink) из австрийского института Науки и техники (Institute of Science and Technology Austria, IST Austria), впервые в истории науки удалось наблюдать экспериментальным путем за явлением фазового перехода первого порядка в рассеивающей квантовой системе. Фазовый переход - это то, с чем нам приходится достаточно часто сталкиваться в обычной жизни, к примеру, когда мы наблюдаем замерзание или таяние воды при переходе точки температуры в 0 градусов Цельсия. Фазовые переходы происходят и на квантовом уровне, но, несмотря на их важность для некоторых областей физики, квантовые фазовые переходы практически не изучены в настоящее время.
Одним из наглядных примеров квантового фазового перехода является так называемое нарушение фотонной блокады, явление, открытое всего около двух лет назад. Суть этого явления заключается в том, что один из фотонов, попавший в ловушку оптической впадины (оптического резонатора) препятствует попаданию туда других фотонов до тех пор пока этот фотон не покинет пределы впадины или не будет поглощен материалом. Однако, при увеличении потока стремящихся попасть во впадину фотонов выше определенного критического предела, явление фотонной блокады нарушается и состояние этой квантовой системы резко переходит от непрозрачного к прозрачному. Такой вид квантового фазового перехода наблюдался учеными неоднократно, однако ученым из Австрии впервые удалось определить и создать целый набор условий, при которых становится возможным изучение данного эффекта.
Во время фазового перехода непрерывное изменение значения какого-либо внешнего фактора, к примеру, температуры, может ускорить или замедлить переход системы от одного стабильного состояния к другому. Фазовые переходы первого порядка характеризуются одновременным сосуществованием двух стабильных фаз системы, такое становится возможным, когда один из контролируемых параметров системы находится в диапазоне, близком к критической точке, точке фазового перехода. Две фазы формируют некоторую промежуточную смешанную фазу, одни части системы уже совершили фазовый переход, а другие - еще нет. В качестве примера можно взять туже воду, находящуюся в стадии замерзания, в ее объеме присутствует и лед и жидкая вода, а общее состояние этой воды еще нельзя назвать ни жидким, ни кристаллическим.
Экспериментальная установка, использованная австрийскими учеными, состояла из сверхпроводящего чипа с микроволновым резонатором на его поверхности. Этот резонатор можно рассматривать и как оптическую впадину, и как квантовый бит, кубит. Чип был охлажден до температуры в 0.01 градуса Кельвина для того, чтобы в наблюдаемые процессы не вмешивались тепловые колебания. Внутрь впадины был направлен непрерывный поток микроволнового излучения, а специальный датчик регистрировал уровень прошедшего через резонатор сигнала. Было замечено, что при определенной интенсивности микроволнового излучения выходной сигнал начинал стохастически колебаться от 100-процентного к нулевому уровню, что говорит о наличии смешанной фазы системы в момент фазового перехода.
"Нам удалось впервые наблюдать случайное переключение между прозрачным и непрозрачным состоянием квантовой системы и все это происходило в полном соответствии с существующей теорией" - рассказывает Иоганнес Финк.
Несмотря на то, что эксперимент австрийских ученых имеет большее отношение к теоретической физике, квантовые фазовые переходы могут оказаться очень полезным явлением для создания элементов квантовой памяти и квантовых процессоров. При помощи этого явления можно будет обеспечить точное управление текущим состоянием квантовой системы, запись и считывание информации из квантовых битов и многое другое.