Без заголовка
19-12-2007 16:47
Слушать этот музыкальный файл два распездяя ищююют двух распездяек.без чувства юмора.с морем комплексов
комментарии: 0
понравилось!
вверх^
к полной версии
Дневник бегали
19-12-2007 16:27
Уравнения Лагранжа и Клеро.
( Алекси Клод Клеро (1713 – 1765) французский математик ин. поч. член Петерб. АН )
Определение. Уравнением Лагранжа называется дифференциальное уравнение, линейное относительно х и у, коэффициенты которого являются функциями от y’.
Для нахождения общего решение применяется подстановка p = y’.
Дифференцируя это уравнение,c учетом того, что , получаем:
Если решение этого (линейного относительно х) уравнения есть то общее решение уравнения Лагранжа может быть записано в виде:
Foto.ru - крупнейший интернет-магазин фототехники. Фотоаппараты и фотокамеры Canon, Nikon, Casio, Olympus, Pentax.
Определение. Уравнением Клеро называется уравнение первой степени (т.е. линейное) относительно функции и аргумента вида:
Вообще говоря, уравнение Клеро является частным случаем уравнения Лагранжа.
С учетом замены , уравнение принимает вид:
Это уравнение имеет два возможных решения:
или
В первом случае:
Видно, что общий интеграл уравнения Клеро представляет собой семейство прямых линий.
Во втором случае решение в параметрической форме выражается системой уравнений:
Исключая параметр р, получаем второе решение F(x, y) = 0. Это решение не содержит произвольной постоянной и не получено из общего решения, следовательно, не является частным решением.
Это решение будет являться особым интегралом.
Далее рассмотрим примеры решения различных типов дифференциальных уравнений первого порядка.
Пример. Решить уравнение с заданными начальными условиями.
Это линейное неоднородное дифференциальное уравнение первого порядка.
Решим соответствующее ему однородное уравнение.
Для неоднородного уравнения общее решение имеет вид:
Дифференцируя, получаем:
Для нахождения функции С(х) подставляем полученное значение в исходное дифференциальное уравнение:
Итого, общее решение:
C учетом начального условия определяем постоянный коэффициент C.
Окончательно получаем:
Для проверки подставим полученный результат в исходное дифференциальное уравнение: верно
комментарии: 2
понравилось!
вверх^
к полной версии