Сколько у человека чувств?
Как минимум девять.
Пять — те, что всем нам известны, то есть зрение, слух, вкус, обоняние и осязание — были впервые перечислены еще Аристотелем, который, будучи выдающимся ученым, все же нередко попадал впросак. (К примеру, согласно Аристотелю, думаем мы с помощью сердца, пчелы происходят от разлагающихся туш быков, а у мух всего по четыре лапки.)
По общепринятому мнению, у человека есть еще четыре чувства.
1. Термоцепция — чувство тепла (или его отсутствия) на нашей коже.
2. Эквибриоцепция — чувство равновесия, которое определяется содержащими жидкость полостями в нашем внутреннем ухе.
3. Ноцицепция — восприятие боли кожей, суставами и органами тела. Странно, но сюда не относится мозг, в котором вообще нет чувствительных к боли рецепторов. Головные боли — независимо от того, что нам кажется, — исходят не изнутри мозга.
4. Проприоцепция — или «осознание тела». Это понимание того, где находятся части нашего тела, даже мы не чувствуем и не видим их. Попробуйте закрыть глаза и покачать ногой в воздухе. Вы все равно будете знать, где находится ваша ступня по отношению к остальным частям тела.
Каждый уважающий себя невропатолог имеет свое собственное мнение насчет того, существуют ли еще какие-то чувства, кроме этих девяти. А некоторые вообще убеждены, что их не меньше двадцати одного. Скажем, как насчет чувства голода? Или жажды? Чувства глубины? Чувства смысла? Языка? Или бесконечно интригующая синестезия, когда чувства сталкиваются и переплетаются так, что музыка начинает восприниматься в цвете?
А как насчет чувства электричества? Или чувства опасности — когда волосы становятся дыбом?
Кроме того, существуют чувства, которые есть у некоторых животных, но отсутствуют у людей. Акулы, например, обладают сильной электроцепцией, позволяющей им чувствовать электрические поля; магнитоцепция определяет поля магнитные и используется в системах навигации птиц и насекомых; эхолокация и «боковая линия» практикуются рыбами для ориентации, а инфракрасное зрение необходимо оленям и совам для ночной охоты или поиска пищи.
Сколько у вещества агрегатных состояний?
Три — что может быть проще? Твердое, жидкое и газообразное?
На самом же деле их не меньше пятнадцати, причем список продолжает расти практически с каждым днем.
Вот наши последние «наилучшие усилия»:
Твердое, аморфное твердое, жидкое, газообразное, плазма, сверхтекучее, сверхтвердое, вырожденное вещество, нейтрониум, сильно симметричное вещество, слабо симметричное вещество, кварк-глюонная плазма, фермионный конденсат, конденсат Бозе-Эйнштейна и странное вещество.
Если не вдаваться в непостижимые (и для большинства из нас абсолютно ненужные) детали, одним из наиболее забавных агрегатных состояний вещества является бозе-эйнштейновский конденсат.
Конденсат Бозе-Эйнштейна (который зачастую называют «бозе-конденсат», или попросту «бэк») возникает, когда вы охлаждаете тот или иной химический элемент до чрезвычайно низких температур (как правило, до температуры чуть выше абсолютного нуля, минус 273 градуса по Цельсию, — теоретическая температура, при которой все перестает двигаться).
Вот тут с веществом начинают происходить совершенно странные вещи. Процессы, обычно наблюдаемые лишь на уровне атомов, теперь протекают в масштабах, достаточно крупных для наблюдения невооруженным глазом. Например, если поместить «бэк» в лабораторный стакан и обеспечить нужный температурный режим, вещество начнет ползти вверх по стенке и в конце концов само по себе выберется наружу.
Судя по всему, здесь мы имеем дело с тщетной попыткой вещества понизить собственную энергию (которая и без того находится на самом низком из всех возможных уровней).
Теоретическая возможность существования бозе-конденсата была предсказана Альбертом Эйнштейном еще в 1925 году, после изучения работ Шатьендраната Бозе, однако получить его экспериментально удалось лишь в 1995 году в Америке — за эту работу его создателям была присуждена Нобелевская премия по физике 2001 года. Сама же рукопись Эйнштейна, считавшаяся утерянной, была обнаружена лишь в 2005-м.
Откуда берутся алмазы?
Есть три вещи, сделать которые необычайно трудно: сломать сталь, раскрошить алмаз и познать самого себя.
Бенджамин Франклин
Из вулканов. Все алмазы образуются под землей, под воздействием сверхвысоких температур и давления, а на поверхность их выносят извержения вулканов.
Образование алмазов происходит на глубине от 160 до 480 км. Большинство алмазов находится в вулканической породе, называемой кимберлитовой, и добывается в районах, где вулканическая активность — обычное явление. Все остальные, случайные, алмазы попросту вымывает из кимберлитовых трубок.
На сегодняшний день в мире насчитывается двадцать стран, где добывают алмазы. Южная Африка по объемам добычи занимает пятое место — после Австралии, Демократической Республики Конго, Ботсваны и России.
Алмазы состоят из чистого углерода. Так же как и графит — вещество, из которого делают грифели для карандашей, но в котором атомы углерода расположены по-другому. Алмаз — одно из самых твердых веществ, встречающихся в природе: десять баллов по шкале твердости Мооса; графит же, наоборот, является одним из наиболее мягких веществ с показателем всего полтора балла, то есть чуть тверже, чем самое мягкое вещество по той же шкале — тальк.
Самый большой из всех известных человечеству алмазов имеет 4000 км в поперечнике и весит десять миллиардов триллионов триллионов карат. Обнаруженный прямо над Австралией (на расстоянии восьми световых лет), алмаз сидит внутри звезды Люси в созвездии Кентавра.
Астрономы назвали эту огромную звезду «Люси» в честь незабвенной классики «Битлз» «Люси в небесах с алмазами», однако «техническое» ее имя — «белый карлик Би-Пи-Эм 37093». Сама же песня была названа так из-за рисунка сына Джона Леннона, Джулиана, на котором он изобразил свою четырехлетнюю подружку Люси Ричардсон.
Когда-то алмазы были самым твердым из известных человечеству материалов. Однако в августе 2005 года немецким ученым удалось получить в лабораторных условиях еще более твердую штуку. Названный ACNR, новый материал состоит из связанных друг с другом углеродных «наностержней» и получается путем сжатия и нагревания сверхсильных молекул углерода до температуры 2226 °С.
Каждая из таких молекул состоит из шестидесяти атомов, переплетенных в пентагональной и гексагональной геометрии; говорят, что они напоминают крошечные футбольные мячи. ACNR — материал настолько твердый, что без труда царапает даже алмаз.
Сколько всего планет в Солнечной системе?
Девять — это неправильный ответ.
Их либо восемь, либо десять, а может, и двадцать одна. Есть даже те, кто скажет: пара миллионов. Наверняка на этот вопрос мы с вами все равно не ответим — до тех пор, пока Международный астрономический союз наконец не придет к какому-то решению с давно просроченным определением «планеты».
Никто уже не считает Плутон девятой планетой. Даже наиболее консервативные астрономы и те признали, что это планета скорее по «культурным», чем по научным соображениям (фактически это означает, что они не станут понижать ее статус, дабы не огорчать народ).
Первооткрыватели Плутона в 1930 году сами были не вполне уверены в этом вопросе — почему, собственно, и называли его «транс-Нептуновым объектом», или ТНО, — эдакое нечто на задворках Солнечной системы, где-то там, за Нептуном.
Плутон гораздо меньше остальных восьми планет; он даже меньше семи их лун. И не намного больше, чем его собственный основной спутник Харон (еще два, меньшие по размеру, были открыты в 2005 году). Орбита Плутона эксцентрическая и лежит в отличной от остальных планет Солнечной системы плоскости, плюс ко всему у Плутона абсолютно иной химический состав.
Четыре наиболее близкие к Солнцу планеты имеют среднюю величину и скалистый рельеф; оставшиеся четыре — газовые гиганты. Плутон — это крошечный шарик льда, один из 60 тысяч маленьких кометоподобных объектов, и это как минимум, образующих пояс Койпера на самом краю Солнечной системы.
Все эти планетоидные объекты (включая астероиды, ТНО и массу прочих субклассификаций) в совокупности известны как «малые планеты». На сегодняшний день официально зарегистрировано 330 795 таких небесных тел, и каждый месяц открывают еще по 5000 новых. По оценкам астрономов, всего подобных объектов с диаметром более километра может быть что-то около двух миллионов. Большинство из них слишком малы, чтобы именоваться планетами, однако двенадцать дадут Плутону сто очков вперед.
Одна из таких «малых планет», открытая в 2005 году и получившая очаровательное имечко 2003 UB313, на самом деле даже больше Плутона. Недалеко от него ушли и остальные, вроде Седны, Оркуса и Кваора.
Вполне может случиться, что в конечном итоге мы с вами окажемся с двумя системами: восьмипланетной[8] Солнечной и системой пояса Койпера, включающей в себя Плутон и все остальные новые планеты.
Такой прецедент, кстати, уже был. Крупнейший из астероидов Церес считался десятой планетой Солнечной системы с момента своего открытия в 1801 году и вплоть до 1850-х, когда его статус был понижен до астероида.
Что находится внутри атома?
Не существует ничего, кроме атомов и пустоты; все остальное — лишь мнение.
Демокрит из Абдер
Да собственно, почти ничего. Основное содержимое атома — это пустота.
Для пущей наглядности попробуйте представить себе атом размером с международный стадион. При этом электроны разместятся на самом верху трибун, каждый — мельче булавочной головки. Ядро же окажется ровно в центре футбольного поля, и размер этого ядра будет не больше горошины.
На протяжении многих веков считалось, что атомы (тогда еще чисто теоретическое понятие) есть мельчайшие единицы материи; отсюда и само слово «атом», по-гречески означающее «неделимый».
Однако в 1897 году был открыт электрон, а в 1911-м — ядро. В 1932-м атом удалось расщепить — так мир узнал про нейтроны.
Но этим дело ни в коем случае не заканчивается. Положительно заряженные протоны и незаряженные нейтроны в ядре состоят из еще более мелких элементов. Эти поистине крошечные частицы, называемые кварками, получили в физике прозвища «странность» и «шарм» и представляются не в формах и размерах, а в «ароматах».
Дальние спутники ядра — отрицательно заряженные электроны — настолько необычны, что никто их так больше не называет. Их нынешний официальный титул — «заряды плотности вероятностей».
К 1950 году было открыто так много субатомных частиц (более 100), что становится даже как-то неловко. Чем бы материя ни была, никто, похоже, так и не смог добраться до ее сути.
Энрико Ферми — итальянец по происхождению, получивший в 1938 году Нобелевскую премию по физике за работы в области атомных реакторов, — сказал буквально следующее: «Если бы я мог запомнить имена всех этих частиц, я был бы ботаником».
Со времен Ферми ученым вроде как удалось договориться насчет числа субатомных частиц, находящихся внутри атома, — двадцать четыре. Эта максимально правдоподобная версия известна как «стандартная модель атома», создающая впечатление, будто теперь у нас с вами имеется вполне сносное представление о том, что есть что в этом мире.
С какой скоростью движется свет?
Как сказать.
Мы часто слышим, что скорость света постоянна, но это не так. Своей максимальной скорости почти в 300 тыс. км/с свет достигает лишь в полном вакууме.
В любой другой среде скорость света сильно отличается от максимума и всегда ниже той цифры, которую наизусть знает каждый из нас. Сквозь алмазы, к примеру, свет проходит более чем в два раза медленнее, примерно 130 тыс. км/с.
До недавнего времени самая пустяковая официально зарегистрированная скорость света (сквозь натрий при температуре минус 272 °С) была чуть больше 60 км/ч — гоночный велосипед и тот резвее.
В 2000 году той же группе ученых (из Гарвардского университета) удалось привести свет к полной остановке, направив его на «бэк» (конденсат Бозе-Эйнштейна) химического элемента рубидий.
Рубидий был открыт немецким химиком Робертом Бунзеном (1811 — 1899), который не изобретал горелку Бунзена, названную в его честь.
Поразительно, но свет невидим.
Сам по себе свет увидеть нельзя, вы можете видеть только то, на что он наталкивается. Световой луч в вакууме, падающий перпендикулярно по отношению к наблюдателю, абсолютно невидим.
Все это, разумеется, очень странно, но вполне логично. Если бы свет был видимым, он образовывал бы нечто вроде тумана между нашими глазами и всем, что находится перед нами.
Темнота — не менее странная штука. Ее нет, но сквозь нее ничего не видно.
Летят ли мотыльки на пламя?
Их к нему совершенно не тянет. Оно их просто дезориентирует.
Если не считать лесных пожаров, искусственные источники света существуют на Земле крайне недолго по сравнению с возрастом взаимоотношений между мотыльками и Солнцем с Луной. Многие насекомые используют эти естественные источники света для ориентации в пространстве и днем, и ночью.
Поскольку Луна и Солнце очень и очень далеко, в результате эволюции насекомые приучились к тому, что свет должен бить им в глаза в одном и том же месте в разное время дня или ночи. Это позволяет им рассчитывать полет по прямой.
Когда же заявляются люди со своими переносными мини-солнцами и мини-лунами, свет сбивает насекомое с толку. Оно считает, что двигается по криволинейной траектории, поскольку его положение относительно стационарной «луны» или «солнца» каким-то образом неожиданно изменилось.
Мотылек начинает выверять свой курс до тех пор, пока вновь не увидит свет как стационарный. Когда же источник света настолько близко, единственная возможность для объекта, находящегося рядом с ним, — это бесконечно нарезать круги.