• Авторизация


Бесконечность в бесконечно малом. Искусство самоподобия 31-05-2024 15:58 к комментариям - к полной версии - понравилось!


Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.
 
 
«Под микроскопом он открыл, что на блохе
Живет блоху кусающая блошка;
На блошке той блошинка-крошка,
В блошинку же вонзает зуб сердито
Блошиночка, и так ad infinitum».
Джонатан Свифт
 
Если вы отломите одно из соцветий цветной капусты, то в руках окажется та же капуста, только меньшего размера. Можно продолжать те же действия снова и снова, и каждый раз будут получаться еще более уменьшенные копии той же капусты.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-2
Открывая одну матрешку за другой, мы попадаем в мир простых иерархических самоподобных множеств. Для описания таких систем в математике применяют термин «фрактал». Фракталы – это самоподобные фигуры, которые повторяют свою структуру при увеличении или уменьшении масштаба. Малая часть фрактала выглядит также как и целый фрактал.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-3
Чем так привлекательны изображения? У фракталов дробная размерность! Линия – одномерна, плоскость – двухмерна, объем мы воспринимаем трехмерным. Фракталы принимают, как правило, дробное значение от 1 до 2 или от 2 до 3. Это не линия, не плоскость и не объем, а нечто среднее между ними.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-4
Множество Кантора
 
Старейшим фракталом считается множество Кантора, одного из основателей теории числового множества. Этот фрактал представляет множество, равное двум копиям самого себя.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-5
Отрезок любой длины делится на три части. Далее вынимается средний участок. На втором шаге подобной процедуры деления на три части с последующим удалением середины подвергаются оба оставшихся отрезка.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-6
Процесс может продолжаться до бесконечности, пока не получится Канторова пыль – множество точек, которые не были удалены.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-7
Древовидный фрактал
 
Строится на линиях путем прибавления на каждом шаге итерации уменьшенной копии предыдущего звена в виде разветвленной ветки. Так растет крона деревьев.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-8
Подобную форму имеет дыхательная, кровеносная и нервная системы.
 
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-9
К природным относятся и фракталы Георга Лихтенберга, немецкого физика, изучавшего природу разрядов молний.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-10
Такие следы оставляют потоки электронов при высоковольтном разряде.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-11
Древовидный фрактал можно построить и на простых геометрических фигурах, например, на единичном квадрате в виде дерева Пифагора. Уменьшение длины стороны квадрата происходит с коэффициентом 0,707.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-12
Если заменить квадраты на прямоугольники, то дерево будет больше похоже на настоящее.
 
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-13
 
Кривая Коха
 
Еще один классический фрактал, который строится на линиях, но результат получается в виде кривой. Для этого нужно отрезок условно разделить на 4 равные части и сложить в виде ребра треугольной формы (итерация №1). Далее каждый из полученных четырех отрезков снова сложить в виде ребра (итерация №2) и т.д. Уже на третьей итерации начинается прорисовываться еще не фигура, но уже и не отрезок. Один из лучших примеров проявления кривой Коха в природе – структура береговых линий. На километровом отрезке побережье выглядит столько же изрезанным, как и на стокилометровом.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-14
Кривую Коха можно замкнуть в форме снежинки. Для этого нужно сложить три отрезка в виде равностороннего треугольника и на каждой стороне получить кривую Коха как в предыдущем примере. При бесконечном делении снежинка (или остров) Коха будет иметь бесконечный по длине периметр, который ограничивает конечную площадь.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-15
Кривая Гильберта
 
Классическая фрактальная кривая, носящая имя немецкого математика Давида Гильберта.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-16
Условно бесконечная нить заполняет площадь квадрата, проходя через каждую точку этой площади.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-17
А этот кубик можно просто расправить в линию и мы не пропустим ни одной точки с необходимым нам разрешением.
 
Кубик Гильберта
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-18
 
Главное свойство, благодаря которому используется кривая Гильберта, - расстояние между двумя любыми соседними точками на кривой равно единице. Это позволяет управлять цветовой палитрой на экране монитора. Конкретнее, позволяет создавать наборы цветов для графических редакторов с отсутствием пропусков оттенков, но с шагом, достаточным для различения.
 
Треугольник Серпинского
 
Это простейший фрактал канторова множества, равное трем копиям самого себя, где каждая копия делается в два раза меньше.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-19
 
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-20
Классический дырявый квадрат (ковер, салфетку) Вацлава Серпинского можно получить, к примеру, делением квадрата на 9 частей и выбрасыванием центральной части. Затем то же повторяется для оставшихся 8 квадратов, и т. д.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-21
Обобщение ковра Серпинского в трехмерное пространство создает губку Менгера. Каждый из кубиков, из которых состоит итерация, делится на 27 втрое меньших кубиков, из которых выбрасывают центральный и его 6 соседей. То есть каждый кубик порождает 20 новых, в три раза меньших.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-22
 
Дракон Хартера
 
Это фрактал, для получения которого достаточно иметь листочек бумаги в клетку и карандаш. Для его построения берется отрезок. Повернув его на 90 градусов вокруг одной из вершин и добавив полученный отрезок к исходному, получим уголок из двух отрезков. Повторим описанную процедуру. Повернем уголок на 90 градусов вокруг вершины и добавим полученную ломаную к исходной и т.д.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-23
При достаточно большом повторении получается кривая в виде дракона.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-24
 
Множества Жюлиа и Мандельброта
 
Дракончиков можно получить иным способом.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-25
Все выше описанные фракталы представляют множества действительных чисел. Когда на числовой оси становится «тесно», числа выходят на комплексную плоскость. В этом случае итерацию приходится проводить для уравнений в виде полиномов, например, второго порядка:
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-26
Многоликость множество Жюлиа зависит от комплексной переменной «с».
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-27
Приведенная последовательность может уходить в бесконечность либо стремиться к некоторой конечной точке комплексной плоскости, называемой аттрактором – к пределу последовательности полинома. Множество всех точек плоскости с конечными аттракторами и называется множеством Жюлиа. Так при значении «с», равному мнимой единице i, получается вот такой красочный ковер:
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-28
При некоторых значениях «с» множество Жюлиа теряет связность и рассыпается на мелкие осколки – пыль Фату. Если множество свя́зно, то оно превращается в множество Мандельброта – в один из самых известных фракталов. В центре находится кардиоида или сердце фрактала, которое облеплено почками, наростами и причудливыми усами. Эти почки и наросты в свою очередь облеплены более мелкими почками и так далее.
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-29
Показанный на полях почтового блока жук Бенуа Мандельброта самоподобен. Строго математически изображения множеств Мандельброта и Жюлиа должны быть черно-белыми – точка либо принадлежит множеству (черный цвет), либо нет. Но были предложены варианты сделать изображения цветными. Самым распространенным способом является окрашивание точек около внешней границы множества в зависимости от количества итераций. Но Бенуа интересовала именно черная зона! Не окрестность с красивыми цветными протуберанцами, а именно скучная черная часть.
 
Существует такой простой шуточный тест. Глядя на эту визитку мира фракталов, нужно ответить на простой вопрос: «Что здесь самое важное – черное или цветное?».
Всем, кто соскучился по красивой математике, Александр Платонов предлагает свою новую статью о том, как можно рисовать картины с помощью формул. Это очень красиво. Особенно в динамике.-30
Если ответ будет «цветное», то вы, скорее всего, в душе дизайнер. А если «черное», то вы самый настоящий и занудный математик.
 
Материал подготовлен по серии почтовых марок Макао 2005 года, приуроченной к Году науки и технологий.
 
Александр Платонов
 
вверх^ к полной версии понравилось! в evernote


Вы сейчас не можете прокомментировать это сообщение.

Дневник Бесконечность в бесконечно малом. Искусство самоподобия | ТаМаРа_ТАРАНЬжина - Вся правда об Иуде Искариоте! | Лента друзей ТаМаРа_ТАРАНЬжина / Полная версия Добавить в друзья Страницы: раньше»