Почему одни события в нашей жизни сохраняются в памяти надолго, а другие исчезают без следа? Исследования процессов, которые формируют развивающийся мозг, позволят ответить на этот вопрос.
В триллере под названием „Помни“
Превращение текущих впечатлений в устойчивую память давно интриговало нейробиологов. Когда вас впервые представляют незнакомому человеку, его имя хранится в кратковременной памяти и через несколько минут может забыться. Однако часть информации, например, кличка друга, переходит в долговременную память и может сохраняться там в течение всей вашей жизни. Механизм, который заставляет мозг хранить одни впечатления и позволяет другим исчезнуть, в последнее время стал более понятным для нас.
Долговременная и кратковременная память сохраняются в связях между нейронами, в местах контакта между ними
Исследователи памяти ломали головы над тем, каким образом активность генов в ядре клетки может управлять событиями в удалённых синапсах. Откуда ген „знает“, когда нужно усилить синаптическую связь, а когда позволить мимолётному мгновению исчезнуть бесследно? И каким образом белки, закодированные в генах, „знают“, на какой именно из тысяч синапсов надо воздействовать? Те же самые вопросы возникают при изучении развития мозга у зародыша, когда мозг решает, какие синаптические связи сохранить, а какие ликвидировать. Изучая это явление, наша лаборатория разгадала одну из интригующих загадок мозга. И, подобно сказочной героине Элли, обладавшей волшебными башмачками с самого начала своих приключений и не знавшей, что именно они ей нужны для возвращения домой, мы поняли, что ответ был всё время у нас перед глазами.
|
Запоминание происходит тогда, когда у нервных клеток повышается эффективность связей, называемых синапсами. В случае кратковременной памяти эффект длится всего минуты или часы. При долговременной памяти синаптическая связь усиливается надолго. Память формируется как следствие прохождения сигналов через синапсы. Сообщения начинают передаваться от одного нейрона |
| ПЕРЕДАЧА СИГНАЛА В СИНАПСЕ |
|---|
[470x278]Импульс, пришедший в окончание аксона, заставляет синаптические пузырьки, хранящиеся в пресинаптическом нейроне, высвобождать химические вещества, называемые нейромедиаторами, в синаптическую щель — узкий зазор между аксоном и дендритом второго, постсинаптического нейрона. Нейромедиаторы связываются с рецепторами на дендрите, запуская локальную деполяризацию мембраны постсинаптического нейрона.
|
| УСИЛЕНИЕ СИНАПТИЧЕСКОЙ ПЕРЕДАЧИ |
[470x264]Если синапс работает недолго, но с высокой частотой, то он становится более эффективным, и в ответ на последующие стимулы в нём будут возникать более сильные отклонения потенциала. Такое временное усиление синаптической связи лежит в основе кратковременной памяти. Хотя ещё далеко не всё понятно, учёные уже знают, что для долговременного усиления синаптической связи постсинаптическая клетка должна выработать специальные белки, усиливающие синаптическую связь. Эти белки могут добавлять новые рецепторы
|
Молекулярные биологи знали, что гены принимают участие в превращении памяти из кратковременной в долговременную. Эксперименты с животными показали, что их обучение требует синтеза новых белков в мозге в течение нескольких первых минут тренинга, в противном случае информация в памяти будет утеряна. Чтобы произвести новый белок, необходимо участок ДНК, находящийся в клеточном ядре, скопировать на относительно небольшую подвижную молекулу, называемую матричной РНК
Один нейрон способен образовывать десятки тысяч синаптических связей, и поэтому трудно себе представить, чтобы для каждого из синапсов существовал свой собственный ген. Нейробиологи стремились найти объяснение тому, каким образом клеточное ядро управляет эффективностью работы каждого синапса в отдельности. Они предположили, что в синапсе, получившем достаточную стимуляцию, должны вырабатываться молекулы
К середине
В 1997 г. Юв Фрей
Однако ответ на вопрос, что представляет собой сигнальная молекула, путешествующая из синапса в ядро и определяющая, когда следует активировать CREB и сохранить след памяти, так и не был получен. Приблизительно в это же время мы с моими коллегами столкнулись с теми же проблемами, над которыми бились исследователи памяти, но рассмотрели их под другим углом зрения. В лаборатории Национального института детского здоровья и развития человека мы изучаем, каким образом формируются связи в мозге во время внутриутробного развития. Нас интересовало, как гены могут кодировать все те миллионы соединений, которые возникают в развивающемся мозге.
Мы, как и другие нейробиологи, изучающие развитие мозга, уже тогда подозревали, что личный опыт может играть определённую роль при отлаживании схемы связей мозга. Развивающийся мозг может вначале иметь лишь грубую приблизительную схему связей, запрограммированную генами. Затем молодой мозг сохраняет самые эффективные из них и уничтожает непригодные к использованию. Но как он определяет, какие связи следует сохранить?
Ещё в 1949 г. психолог Дональд Хебб
Не каждый синаптический вход на нервную клетку обладает эффективностью, чтобы заставить её разряжаться. Нейрон подобен электронному микропроцессору, поскольку он получает на свои дендриты тысячи сигналов и постоянно интегрирует всю входящую информацию. Однако в отличие от микропроцессора, обладающего множеством выходных контактов, нейрон имеет всего один выход, свой аксон. В результате нейрон может реагировать на входящие сигналы только одним способом: он может либо решить послать сигнал следующему нейрону в цепи, разрядившись импульсом и направив его по своему аксону, либо ничего не сделать.
Когда нейрон получает сигнал, потенциал мембраны его дендрита слегка отклоняется в сторону положительного значения. Когда через синапс проходят высокочастотные залпы импульсов, происходит временное повышение его эффективности, проявляющееся как образование кратковременной памяти. Недолгой работы одиночного синапса обычно бывает недостаточно для того, чтобы заставить нейрон разрядиться импульсом, который правильнее называть потенциалом действия. Однако когда множество синапсов, приходящихся на один нейрон, срабатывают одновременно, их совместные усилия настолько резко изменяют потенциал нейрона, что вынуждают его разрядиться потенциалом действия и передать сигнал следующему в цепи.
[470x308]То, что активация генов, приводящая к синтезу белков, необходима для формирования долговременной памяти, было открыто ещё
|
|
|
Поскольку информация в нервной системе кодируется паттерном импульсов нейронной активности в мозге, я предположил, что определённые гены в нервных клетках должны включаться и выключаться в зависимости от характера импульсного разряда. Для того чтобы проверить эту гипотезу, мы с Коиши Ито
Когда мы обнаружили, что гены нейронов могут регулироваться в соответствии с паттерном импульсов, генерируемых клеткой, мы решили выяснить, каким образом характер изменений электрического потенциала, происходящих на поверхности клетки, может управлять генами, расположенными в ядре нейрона. Для этого нам необходимо было исследовать цитоплазму клетки и узнать, какие преобразования претерпевает та информация, которая распространяется от поверхности к ядру.
Как и в хитросплетении дорог, здесь также существует множество пересекающихся биохимических путей, передающих сигнал через многочисленные перекрёстки от клеточной мембраны вглубь клетки.
Информация об электрическом состоянии нейрональной мембраны подаётся в эту систему химических реакций, происходящих в цитоплазме, через управление входом ионов кальция сквозь
Подобно тому, как падающие костяшки домино толкают друг друга, входящие в цитоплазму ионы кальция активируют ферменты, называемые протеинкиназами. Последние запускают другие ферменты путём химической реакции, называемой фосфорилированием, при которой к белкам присоединяется фосфатная метка. Подобно бегунам, передающим эстафетную палочку, ферменты, снабжённые такой меткой, выходят из состояния покоя и стимулируют активность транскрипционных факторов. CREB, например, активируется
Наполняя нейроны красителем, который при повышении концентрации кальция в цитоплазме начинает флуоресцировать зелёным цветом, мы смогли проследить, каким образом различные паттерны разряда потенциала действия переводились на язык динамически меняющейся концентрации кальция. Одна возможность заключалась в том, что транскрипция генов может регулироваться степенью прироста концентрации кальция в нейроне и что различные гены
Фелик Эшет
Мы обнаружили, что нельзя представить путь от клеточной мембраны до ДНК в виде одной простой последовательности химических реакций. На каждом этапе, начиная со входа кальция через мембрану, реакции разветвлялись по сети различных, хотя и переплетавшихся путей, каждый из которых имел свои собственные временные параметры, определяющие, насколько хорошо данный путь будет реагировать на прерывистые сигналы той или иной частоты. От этого и зависело, какой именно сигнальный путь достигнет ядра при любой конкретной частоте следования потенциалов действия.
Одни сигнальные пути отвечали быстро и тут же возвращались в исходное состояние. Таким образом, они реагировали на высокочастотные залпы потенциалов действия, но не могли поддерживать постоянную активацию, если вспышки импульсов прерывались длительными паузами. Другие пути медленно передавали сигналы и не могли ответить на быстрые залпы импульсов. Тем не менее, будучи активированными, они очень медленно выключались, что означает, что они способны сохранять активность между залпами импульсов, разделёнными длительными промежутками покоя. Активация генов по такому пути будет ответом на нечасто, но регулярно поступающие стимулы.
Другими словами, мы наблюдали, что сигналы с разными временными паттернами распространялись по разным путям, которые были настроены именно на них, и, в конечном счёте, управляли различными транскрипционными факторами и генами. Наши измерения показали, что CREB быстро активировался потенциалами действия, однако медленно инактивировался после того, как стимуляция нейрона прекращалась. Очевидно, что CREB способен сохранять активацию между повторяющимися залпами импульсов, разделёнными интервалами
Но могут ли сигнальные механизмы, изученные нами ради познания развития мозга, иметь отношение и к механизмам памяти?
Если ту часть мозга, которая была удалена у пациента HM
Увеличение эффективности синапса, называемое длительной
Удивительно, но если ту же самую высокочастотную стимуляцию подавать повторно, то возникает устойчивое повышение эффективности синапса, и это состояние называют поздней ДП. Но стимулы нельзя подавать сразу друг за другом, т. к. залпы должны быть разделены достаточно длительными периодами покоя. А добавление в солевой раствор, омывающий срез, химических веществ, блокирующих синтез мРНК или белка, приводит к падению эффективности синапса до его исходного значение в течение
С помощью данной методики Фрей и Моррис показали, что белки, повышающие эффективность синапса, влияют на любой временно усиленный синапс. Сначала они кратковременно стимулировали один синапс, чтобы вызвать в нём раннюю ДП. Затем они заставляли работать второй синапс на том же самом нейроне в том режиме, чтобы вызывать позднюю ДП
Мы предположили, что когда синапс разряжается достаточно сильно или синхронно с другими синапсами, заставляя нейрон посылать потенциалы действия по своему аксону, кальций должен входить в нейрон прямо через
Чтобы проверить эту гипотезу, Серена Дьюдек
После стимуляции мы обработали мозговые ткани таким образом, чтобы определить, был ли активирован транскрипционный фактор CREB. Оказалось, что в небольшом участке среза мозга, в котором под воздействием стимуляции возникали потенциалы действия при полном отсутствии синаптической активности, ко всем молекулам CREB были прикреплены фосфатные группы, т. е. CREB был переведён в активное состояние.
Далее мы проверили активность гена zif268, связанного с возникновением ДП и памяти. Было обнаружено, что он также оказался активированным разрядом гиппокампальных нейронов при отключенных синапсах. Однако когда мы провели такую же стимуляцию в присутствии другого вещества, которое блокирует
Полученные нами результаты ясно показали, что нет никакой необходимости в посреднике между синапсом и ядром.
Возможно, существуют пока неизвестные сигнальные молекулы, распространяющиеся из синапса в ядро и действительно участвующие в процессах памяти, однако эксперименты показали, что в них нет необходимости. Как предсказывают правила обучения Хебба, разряд нейрона, происходящий вследствие возбуждения синаптических входов клетки, является тем фактором, который необходим для упрочения памяти.
Подобно Леонарду в фильме „Помни“, мы не всегда заранее знаем, какие события следует сохранить в памяти надолго. Оперативная память, необходимая для действий в настоящем, обеспечивается кратковременными изменениями силы отдельных синапсов. Но если событие достаточно важное или повторяется многократно, то синапсы заставляют нейрон, в свою очередь, выдавать нервные импульсы интенсивно и многократно, заявляя тем самым: „это событие следует запомнить“. Включаются соответствующие гены, белки памяти отыскивают те синапсы, в которых удерживается кратковременная память, и, можно сказать, помечают их клеймом.