Татьяна Федотова
В 1850-х годах в Европе все еще продолжалось противостояние сторонников старого академического искусства, считавших этот проверенный путь единственно возможным, и тех, кто не просто мечтал о новом искусстве, но не боялся творить по-новому. Среди таких «мечтателей» были молодые художники-символисты, назвавшие себя «Братством прерафаэлитов». Несмотря на критику, которую обрушивали на них «академики», непонимание и обвинения, прерафаэлиты продолжали выставлять картины, наполненные глубокой символикой, которая прежде всего была обращена к душе человека
Уильям Холман Хант
Дмитрий Зубов
В феврале 1888 года по совету Тулуз-Лотрека Ван Гог переезжает в Арль. Позади два года парижской жизни, более двух тысяч работ, из которых ни одна так и не нашла своего покупателя. От полного отчаяния спасает только поддержка брата Тео, близкого друга, советчика и главного адресата его писем. Но здесь, на юге Франции, вдали от столичной суеты все меняется: измученная душа Винсента хотя бы на короткий срок вновь обретает покой и гармонию. Арль представляется художнику райским уголком, местом грез, страной «Утопией»: цветущие сады и старинные парки города, незабываемые поездки к морю, залитые солнцем окрестные поля и конечно же — пленительные южные ночи
Винсент Ван Гог
Дмитрий Зубов
Во французском языке есть интересное выражение — «скрипка Энгра». Своим появлением оно обязано известному художнику Жану Огюсту Доминику Энгру и его страстному увлечению музыкой. Но людей, занимающихся каким-нибудь любимым делом параллельно со своей основной профессией, оказалось так много, что это выражение зазвучало и на других языках, обозначая другое призвание, или вторую натуру, человека. Герман Гессе не стал исключением. Правда, его любовь к рисованию назвать второй натурой в прямом смысле слова нельзя. Натур было гораздо больше — можно только удивляться многогранности его таланта. В молодости Гессе, подобно Энгру, не мыслил себя без игры на скрипке, год учился на часового мастера, неплохо разбирался в антиквариате. Но живопись заняла в его жизни такое место, что привычное слово «увлечение» не достаточно хорошо передает глубину происходивших в его душе процессов
Герман Гессе
Вероника Мухамадеева
Однажды тихим воскресным вечером 1866 года в Барселоне встретились два человека — молодой священник Маньяне и каталонский книготорговец Жузеп Мария Бокабелья Вердагер, оба члены религиозного Общества почитателей святого Иосифа. Они обсуждали идею постройки храма во славу Святого Семейства. Главным условием будущего строительства было то, что храм должен возводиться на пожертвования горожан как свидетельство их любви и благодарности Богу
Антонио Гауди
Илья Вузман
Открытие памятника Петру I в день столетия его вступления на престол, 7 августа 1782 года, стало одним из величайших событий в истории Петербурга. Под звуки оркестра и пушечную пальбу рухнули фанерные щиты, явив взорам собравшихся гениальное творение Фальконе. Но сам создатель Медного всадника при этом не присутствовал — не был приглашен. Императорский двор сделал вид, что его не существует
Этьен-Морис Фальконе
Математика
Игорь Акулич
В далёком 1971 году Министерство связи (тогда ещё СССР) ввело в обращение почтовые индексы. Иными словами, каждому почтовому отделению был присвоен свой уникальный шестизначный числовой индекс, а на конвертах появился специальный шаблон — так называемый кодовый штамп, содержащий заготовки для шести цифр:
Надо было обвести синим или чёрным цветом нужные линии, чтобы образовались цифры. Но обводить не как кому нравится, а в соответствии с образцом, который имелся на обратной стороне конверта:
При обработке корреспонденции конверты пропускались через сортировальный автомат с оптическим датчиком, который и определял их дальнейшую судьбу — куда какой конверт направится. Такое нововведение позволило существенно ускорить доставку писем (доказательством эффективности системы является тот факт, что она по сей день используется, например, в России).
Но почему изображения цифр имеют именно такой вид, как на образце? Ведь большинство из них можно было нарисовать и по-другому. Неужели они создавались неведомым нам дизайнером, что называется, «от фонаря», лишь бы внешне напоминали привычные символы?
Светлана Обухова
Есть что-то притягательное в русских портретах восемнадцатого столетия. Из глубины темного фона, словно из сумрака канувших в лету времен, от которых в памяти нашей не осталось и следа, появляются лица. Незнакомые, но такие живые, что трудно оторвать взгляд! Как, например, от портретов сестер Воронцовых кисти Дмитрия Григорьевича Левицкого, одного из самых ярких мастеров русской портретной школы того времени
Дмитрий Левицкий
Светлана Обухова
В 1808–1810 годах на месте бывшего павильона Катальной горки в Екатерининском парке Царского села по распоряжению Александра I соорудили Гранитную террасу, а внизу у Большого пруда — Большую гранитную пристань. По зеленому склону проложили новые дорожки, связавшие террасу и пруд. А устье бокового канальчика, куда еще в 1770-х годах были выведены воды местного источника, скрытого под насыпью, оформили фонтаном. И еще через шесть лет, летом 1816 года, здесь появилась бронзовая фигурка, которой суждено было стать символом Царского села…
Дмитрий Зубов
Хотите быстро и наглядно изучить русскую историю? Нет ничего проще: приезжайте в Великий Новгород, разыщите в самом центре древнего Детинца памятник «Тысячелетие России» и внимательно его рассмотрите
Великий Новгород. Памятник «Тысячелетие России». 1862
Светлана Обухова
В 1880 году в доме Ивана Шишкина на Пятой линии Васильевского острова наконец-то поселилось счастье. Оно пришло вместе с Ольгой Лагодой, теперь Шишкиной, одной из первых тридцати женщин, принятых на обучение в Академию художеств
Иван Шишкин
Илья Барабаш
Есть картины, которые скрывают в себе неизмеримо больше, чем кажется посетителю музея, бросающему на них беглый взгляд. Оценив яркость красок, верность глаза и руки художника и в легком недоумении насчет смысла изображенного, он отходит от нее к следующей. И через несколько минут уже не помнит ни имени художника, ни названия, ни смысла…
Стефан Бакалович
Математика
Иван Масленников
Все когда-то учились умножать (а кто-то, может, и сейчас учится) и наверняка видели таблицу Пифагора. В учебниках её часто рисуют размером 10×10, хотя можно продолжать таблицу до бесконечности
Химия
Наталья Сапрыгина
Все мы знаем, как полезно зимой пить горячий чай с лимоном: не только чтобы пополнить запас витаминов, но и чтобы насладиться приятным вкусом и ароматом напитка. Я очень люблю неспешно выпить чашечку свежезаваренного чёрного чая с ломтиком лимона и чайной ложечкой сахара и подумать о чём-нибудь интересном, на что у нас обычно не хватает времени. Например... почему чай светлеет от лимона? Наверняка многие задумывались об этом. Некоторые даже ответят: потому что лимон кислый. Они будут абсолютно правы. В лимоне содержится лимонная кислота, а в чае особые вещества, которые придают ему окраску и изменяются под действием кислоты.
А что сделать, чтобы чай не светлел, а темнел? Может быть, посолить его или поперчить? Ни то и ни другое: чай потемнеет, если в него добавить пищевой соды. Возьмём стакан чёрного чая, положим в него пол чайной ложки пищевой соды, размешаем и увидим, что чай приобрёл интенсивную тёмную окраску (к сожалению, после этого эксперимента, как и после любого химического эксперимента, этот чай пить будет уже нельзя). Если снова добавить в чай кислоты, например, ещё лимонного сока, то чай посветлеет, а если потом добавить соды, то снова потемнеет.
Таким способом цвет чая можно будет обращать из тёмного в светлый много раз. Лимонную кислоту можно заменить столовым уксусом (это раствор уксусной кислоты в воде), а пищевую соду — стиральной (кальцинированной) содой или нашатырным спиртом (из аптечки, это раствор аммиака в воде). Только надо быть очень осторожным: пользоваться перчатками, проводить эти эксперименты на открытом воздухе, чтобы не вдохнуть пары уксусной кислоты и аммиака. Кислоту и аммиак нужно добавлять по каплям, для этого вам понадобится пипетка. После опытов её можно будет хорошо вымыть и убрать обратно.
Физика
Александр Бердников
Рис. 1→
Обычно окраска предметов возникает таким образом. На них падает белый свет. Белый свет — это смесь разнообразных «чистых» цветов. Каждый предмет какие-то из них поглощает, а какие-то отражает. Упал белый свет на лист дерева — отразился только зелёный, поэтому мы видим лист зелёным. Но так бывает не всегда — например, цвет неба возникает иначе. Об этом мы и поговорим.
Начнём с примера, который легко сделать дома и с которым легко экспериментировать.
<Фото 1
Опустите в банку с водой кусочек мыла и понемногу растворяйте его, пока вода не станет мутно-голубоватой. Цвет будет хорошо заметен, если смотреть сквозь бутылку на чёрный фон (фото 1, а). Помимо мыльной воды сгодится сильно разбавленное молоко.
Чем интересна мыльная вода? При взгляде сбоку она кажется голубоватой. Но посмотрите через бутылку на свет — жидкость, будто прозрачный янтарь, окрасится в оранжевые оттенки (фото 1, б).
Такая картина напоминает небо. Оно тоже бывает то голубое днём, то красное на рассвете или закате. Цвет неба — это цвет освещённого солнцем воздуха (атмосферы), который мы видим на фоне чёрного космоса. Воздух, конечно, прозрачнее нашего «неба в бутылке». Его цвет становится заметен, только если смотреть сквозь многокилометровую толщу. При взгляде на далёкий ландшафт заметно, что с удалением он становится синеватым, а затем всё более светлым и однотонным (см. рис. 1). На самом деле, это не цвет ландшафта (горы на рисунке покрыты зелёным лесом), а цвет воздуха, сквозь который вы смотрите. При такой толщине его синеватый оттенок уже заметен.
Информатика
Григорий Фельдман
"Никто не может «владеть» математической формулой. Математика принадлежит Богу". Дональд Кнут о недопустимости патентов на программное обеспечение
Дональд Кнут
Илья Барабаш
Эту картину художник Михаил Васильевич Нестеров считал вершиной своего творчества, говоря: «В начале жизни — „Отрок Варфоломей“, к концу — „Душа народа“». И верно, она замыкает цикл размышлений, начатый «житием» Сергия Радонежского еще в 1889 году. Закончена картина была в 1916 году, но замысел ее, драгоценный, лелеемый и потому почти никому не открываемый, возник десятью годами раньше. Как развитие идеи, воплощенной в картине «Святая Русь», а затем в росписи Марфо-Мариинской обители в Москве, названной «Путь ко Христу»
Михаил Нестеров
Марина Заболотская
Иногда мне кажется, что это самое сокровенное место на русской земле. Здесь никогда не бывает многолюдно и несказанно прекрасна природа. И кажется, в истории небольшого обветшавшего храма, затерявшегося среди смоленских лесов, как в зеркале, отразилась судьба России
М. К. Тенишева
Вадим Карелин
У Николая Константиновича Рериха есть одна необычная серия картин. Она называется «Санкта», то есть «Святые», и посвящена духовным ценностям русского монашества, но написана специально для… американцев
Николай Рерих
Математика
Андрей Щетников
Есть такая книга про математику, которая называется «Доказательства из Книги»*. Её написали Мартин Айгнер и Гюнтер Циглер, а идею придумал замечательный венгерский математик Пауль Эрдеш. Эрдеш любил говорить, что «у Бога есть Книга, в которую он включает совершенные доказательства математических теорем. Математик, конечно, не обязан верить в Бога — но он обязан верить в эту Книгу».
* М. Айгнер, Г. Циглер. Доказательства из Книги (перев. с англ.). — М.: «Мир», 2006. Новое издание готовится в издательстве «БИНОМ. Лаборатория знаний».
Я уже много лет занимаюсь историей математики. И если бы меня спросили, какое самое древнее известное мне доказательство заслуживает того, чтобы быть включённым в Книгу с большой буквы, я бы сказал: конечно же, это доказательство несоизмеримости стороны и диагонали квадрата. Мы не знаем имени математика, который открыл эту несоизмеримость; нам известно лишь то, что он жил в Древней Греции в V веке до нашей эры и был одним из учеников Пифагора.
«Чем же замечательно это доказательство?» — спросите вы. Я отвечу на этот вопрос так. Во-первых, открытие, которое сделали пифагорейцы, стало колоссальным стимулом для развития математики, вплоть до наших дней. Сколько ни рассматривай квадрат и его диагональ, несоизмеримости его стороны и диагонали глазами не увидишь; её можно постичь лишь рассуждением. И начиная с этого открытия, рассуждение приобрело в математике главенствующую роль. Во-вторых, придуманное пифагорейцами доказательство очень красивое и простое. Так что давайте рассмотрим его и включим в свою собственную Книгу, поместив его там на самой первой странице.
Надо сразу же сказать, что пифагорейцы не собирались открывать несоизмеримость: они искали общую меру стороны и диагонали квадрата, а вместо этого наткнулись на неожиданное свойство этих отрезков и очень ему удивились! Знаменитый древнегреческий философ Аристотель рассказывает об этом так: «Все начинают с удивления, как удивляются, например, загадочным самодвижущимся игрушкам, или солнцеворотам, или несоизмеримости диагонали (ибо всем, кто ещё не усмотрел причину, кажется удивительным, если что-то нельзя измерить самой малой мерой). А под конец нужно прийти к противоположному — и к лучшему, как говорит пословица: ведь ничему бы так не удивился человек, сведущий в геометрии, как если бы диагональ оказалась соизмеримой».
Математика, Социология
Глеб Погудин, Екатерина Антоненко
Существуют три вида лжи: ложь, наглая ложь и статистика. Старая шутка
Какой длины в среднем хобот у слона? Сколько среднестатистический человек тратит времени в день на завязывание шнурков? Каков процент девочек с голубыми волосами среди женского населения России?
Получить точный ответ на любой из этих вопросов крайне сложно: вам пришлось бы познакомиться со всеми слонами мира, провести много часов с секундомером в руке в самых разных точках земного шара и, что теперь кажется не таким уж сложным, пересчитать всех девочек с голубыми волосами в России.
Не странно ли, что на многие вопросы такого типа ответ можно найти в книгах или в интернете? Эти ответы получаются обычно в ходе «статистического исследования». Например, можно пойти гулять по Африке, измерить длину хобота только у первой тысячи встреченных слонов и в качестве ответа взять среднее из этих чисел. Скорее всего, полученное число будет близко к правильному ответу. На такой же логике основаны и всевозможные опросы общественного мнения. Однако у такого способа выяснения истины есть весьма неожиданные подводные камни.
Например, те объекты, которые вы выбрали для измерений, в нашем случае это первая тысяча встреченных слонов, могут оказаться «нетипичными». На такой ошибке основана шутка: «Интернет-опрос показал, что 100 процентов россиян пользуются интернетом». Разумеется, если человек принял участие в интернет-опросе, он воспользовался интернетом.