MARS - источник специализированного синхротронного излучения четвертого поколения, который планируется создать в Курчатовском институте в Москве. В настоящее время на территории института работает синхротронный источник поколения 2+, а в мире существуют три установки 3-го поколения (США, Япония, Европа), а также лазеры на свободных электронах, спектр применения которых в науке схож по своим возможностям с синхротронными источниками.
[показать]
Ускорительно-накопительный комплекс Курчатовского источника синхротронного излучения
Современные синхротронные источники обладают высокой степенью поляризации, непрерывностью спектра и большой интенсивностью, что позволяет использовать синхротронное излучение в спектроскопии, рентгеновском структурном анализе биологических объектов, для изучения оптической активности молекул, а также для фотолитографии и в производстве интегральных схем. В целом область применения фотонных источников излучения (синхротронов и лазеров) зависит от мощности установки. Источник синхротронного излучения нового поколения станет самым мощным среди существующих установок подобного уровня, но будет уступать европейскому рентгеновскому лазеру XFEL (X-RAY Free Electron Laser). Таким образом, он перекроет разрыв в области структурных исследований, образовавшийся между источниками третьего поколения и лазерами.
Коллайдер тяжелых ионов NICA
Строительство ускорительного комплекс-коллайдера тяжелых ионов NICA (Nuclotron-based Ion Collider fAcility) ведется на территории Объединенного института ядерных исследований в Дубне на базе действующего ускорителя Нуклотрон. Целью проекта будет изучение перехода ядерной материи в кварк-глюонную плазму, а также свойств смешанной фазы этих состояний.
[показать]
Коллайдер тяжелых ионов предполагается строить на базе ускорителя Нуклотрон
Исследования в этой области помогут ответить на вопрос о том, какие процессы происходили в ранней Вселенной незадолго после Большого взрыва. Относительно низкие энергии столкновения ядер золота (порядка 5,5 ГэВ на нуклон) позволят дубненским экспериментаторам увидеть эффекты, незаметные для сверхмощных коллайдеров БАК (CERN) и RICH (Брукхейвен). В настоящее время ведутся работы по модернизации систем Нуклотрона, а к 2015 году планируется завершить строительство сверхпроводящих колец коллайдера. Финансирование проекта ведется за счет 23-х стран-участниц ОИЯИ.
Сверхмощный лазер
Проект создания сверхмощного пятипетаваттного лазера PEARL (PEtawatt pARametric Laser) в Институте прикладной физики РАН в Нижнем Новгороде. В ИПФ уже имеется богатый опыт в области строительства крупных лазерных установок. Одиннадцать лет назад на территории этого института был построен первый в России лазер с титан-сапфиром в качестве рабочего вещества мощностью 1ТВт, а в 2006 году при финансировании "Росатома" был создан субпетаваттный лазерный комплекс, на базе которого планируется строительство проекта PEARL.
[показать]
Субпетаваттный лазерный комплекс. Установка 2006 года
Интерес атомщиков к лазерной установке объясняется возможностью создания лазерного термоядерного синтеза, как альтернативы термоядерному реактору типа токамака. При помощи сверхвысокой интенсивности лазерного излучения можно обеспечить нагрев дейтерий-тритиевой мишени. При этом период удержания плазмы, необходимый для протекания реакции синтеза, составляет 10-10 секунды, что на 10 порядков меньше, чем в токамаке. Помимо участия в термоядерной программе, модернизированная установка PEARL может войти в состав панъевропейского проекта ELI (Extreme Light Infrastructure), который включает в себя строительство нескольких крупных лазерных комплексов на территории европейских государств для решения различных задач фундаментальной физики. В частности, на российском лазере могут быть исследованы эффекты нелинейности вакуума, а также процесс рождения электрон-позитронных пар при воздействии на вакуум высокоэнергетического лазерного излучения.