1.2.20. Даны два массива x[1] <= ... <= x[k] и y[1] <= ...
<= y[l]. Найти их "пересечение", т.е. массив z[1] <= ... <=
z[m], содержащий их общие элементы, причем кратность каждого
элемента в массиве z равняется минимуму из его кратностей в мас-
сивах x и y. Число действий порядка k+l.
1.2.21. Даны два массива x[1]<=...<=x[k] и y[1]<=...<=y[l]
и число q. Найти сумму вида x[i]+y[j], наиболее близкую к числу
q. (Число действий порядка k+l, дополнительная память - фиксиро-
ванное число целых переменных, сами массивы менять не разрешает-
ся.)
Указание. Надо найти минимальное расстояние между элемента-
ми x[1]<=...<=x[k] и q-y[l]<=..<=q-y[1], что нетрудно сделать в
ходе их слияния в один (воображаемый) массив.
1.2.22. (из книги Д.Гриса) Некоторое число содержится в
каждом из трех целочисленных неубывающих массивов x[1] <= ... <=
x[p], y[1] <= ... <= y[q], z[1] <= ... <= z[r]. Найти одно из
таких чисел. Число действий должно быть порядка p + q + r.
смотреть русские порно каналы бесплатно
список порно каналов
плеер +для просмотра порно каналов
порно каналы +с чатом
интернет канал порно смотреть бесплатно
русская ночь канал онлайн
порно каналы секс онлайн
порно online каналы бесплатно
Решение.
p1:=1; q1=1; r1:=1;
{инвариант: x[p1]..x[p], y[q1]..y[q], z[r1]..z[r]
содержат общий элемент }
while not ((x[p1]=y[q1]) and (y[q1]=z[r1])) do begin
| if x[p1] z[r1]}
writeln (x[p1]);
1.2.23. Та же задача, только заранее не известно, существу-
ет ли общий элемент в трех неубывающих массивах и требуется это
выяснить (и найти один из общих элементов, если они есть).
1.2.24. Элементами массива a[1..n] являются неубывающие
массивы [1..m] целых чисел (a: array [1..n] of array [1..m] of
integer; a[1][1] <= ... <= a[1][m], ..., a[n][1] <= ... <=
a[n][m]). Известно, что существует число, входящее во все масси-
вы a[i] (существует такое х, что для всякого i из [1..n]
найдётся j из [1..m], для которого a[i][j]=x). Найти одно из та-
ких чисел х.
Решение. Введем массив b[1]..b[n], отмечающий начало "оста-
ющейся части" массивов a[1]..a[n].
for k:=1 to n do begin
| b[k]:=1;
end;
eq := true;
for k := 2 to n do begin
| eq := eq and (a[1][b[1]] = a[k][b[k]]);
end;
{инвариант: оставшиеся части пересекаются, т.е. существует
такое х, что для всякого i из [1..n] найдётся j из [1..m],
не меньшее b[i], для которого a[i][j] = х; eq <=> первые
элементы оставшихся частей равны}
while not eq do begin
| s := 1; k := 1;
| {a[s][b[s]] - минимальное среди a[1][b[1]]..a[k][b[k]]}
| while k <> n do begin
| | k := k + 1;
| | if a[k][b[k]] < a[s][b[s]] then begin
| | | s := k;
| | end;
| end;
| {a[s][b[s]] - минимальное среди a[1][b[1]]..a[n][b[n]]}
| b [s] := b [s] + 1;
| for k := 2 to n do begin
| | eq := eq and (a[1][b[1]] = a[k][b[k]]);
| end;
end;
writeln (a[1][b[1]]);
тв порно каналы бесплатно
порно онлайн 24 канала
немецкие порно каналы
1.2.25. Приведенное решение предыдущей задачи требует по-
рядка m*n*n действий. Придумать способ с числом действий порядка
m*n.
Указание. Придется пожертвовать симметрией и выбрать одну
из строк за основную. Двигаясь по основной строке, поддерживаем
такое соотношение: во всех остальных строках отмечен макси-
мальный элемент, не превосходящий текущего элемента основной
строки.
1.2.26. (Двоичный поиск) Дана последовательность x[1] <=
... <= x[n] целых чисел и число a. Выяснить, содержится ли a в
этой последовательности, т. е. существует ли i из 1..n, для ко-
торого x[i]=a. (Количество действий порядка log n.)
Решение. (Предполагаем, что n > 0.)
l := 1; r := n+1;
{если a есть вообще, то есть и среди x[l]..x[r-1], r > l}
while r - l <> 1 do begin
| m := l + (r-l) div 2 ;
| {l < m < r }
| if x[m] <= a then begin
| | l := m;
| end else begin {x[m] > a}
| | r := m;
| end;
end;
(Обратите внимание, что и в случае x[m] = a инвариант не наруша-
ется.)
Каждый раз r-l уменьшается примерно вдвое, откуда и вытека-
ет требуемая оценка числа действий.
Замечание.
l + (r-l) div 2 = (2l + (r-l)) div 2 = (r+l) div 2.
1.2.27. (Из книги Д.Гриса) Дан массив x: array [1..n] of
array [1..m] of integer, упорядоченный по "строкам" и по
"столбцам":
x[i][j] <= x[i+1][j],
x[i][j] <= x[i][j+1]
и число a. Требуется выяснить, встречается ли a среди x[i][j].
Решение. Представляя себе массив a как матрицу (прямо-
угольник, заполненный числами), мы выберем прямоугольник, в ко-
тором только и может содержаться a, и будем его сужать. Прямо-
угольник этот будет содержать x[i][j] при 1<=i<=l и k<=j<=m.
1 k m
-----------------------------------
1| |***********|
| |***********|
| |***********|
l| |***********|
|---------------------------------|
| |
n| |
-----------------------------------
(допускаются пустые прямоугольники при l = 0 и k = m+1).
l:=n; k:=1;
{l>=0, k<=m+1, если a есть, то в описанном прямоугольнике}
while (l > 0) and (k < m+1) and (x[l][k] <> a) do begin
| if x[l][k] < a then begin
| | k := k + 1; {левый столбец не содержит a, удаляем его}
| end else begin {x[l][k] > a}
| | l := l - 1; {нижняя строка не содержит a, удаляем ее}
| end;
end;
{x[l][k] = a или прямоугольник пуст }
answer:= (l > 0) and (k < m+1) ;
Замечание. Здесь та же ошибка: x[l][k] может оказаться не-
определенным. (Её исправление предоставляется читателю.)
1.2.28. (Московская олимпиада по программированию) Дан не-
убывающий массив положительных целых чисел a[1] <= a[2] <=...<=
a[n]. Найти наименьшее целое положительное число, не представи-
мое в виде суммы нескольких элементов этого массива (каждый эле-
мент массива может быть использован не более одного раза). Число
действий порядка n.
Решение. Пусть известно, что числа, представимые в виде
суммы элементов a[1],...,a[k], заполняют отрезок от 1 до некото-
рого N. Если a[k+1] > N+1, то N+1 и будет минимальным числом, не
представимым в виде суммы элементов массива a[1]..a[n]. Если же
a[k+1] <= N+1, то числа, представимые в виде суммы элементов
a[1]..a[k+1], заполняют отрезок от 1 до N+a[k+1].