Неформальные задачи
03-03-2009 22:57
к комментариям - к полной версии
- понравилось!
Рефлексивные возможности формализованной логики сделали ее мощным инструментом для решения некоторых неформальных задач. В частности, при приложениях математики все время приходится подбирать математическую модель для рассматриваемого явления. Подбор модели начинается с подбора соответствующей теории, определяющей базовые структуры данных и операции в модели.
Например, если мы в качестве базовой теории возьмем математический анализ, то у нас появятся действительные числа вместе со всеми операциями; если возьмем графы, у нас появятся пути, циклы, топологические преобразования графов и т. п. Далее в выбранной теории дается представление исследуемых понятий. Например, принимается решениесчитать плотность материала действительным числом, а не функцией от точки пространства, считать зависимость одной характеристики от другой непрерывной, либо просто записываются графы в случае более привычного для нынешней информатики способа описания. Пишутся уравнения, связывающие характеристики элементов, либо другие соотношения между представлениями понятий, и на этом построение модели завершается, чтобы сразу же начаться снова, потому что, как правило, модель оказывается неадекватной. Так что подбор формализации столь же важен для задачи, как выбор супруга для человека, и часто делается столь же безответственно, что превращает работу в мазохистскоесамоистязание либо в шарлатанство высшего класса, прикрытое весьма умными терминами, но начисто забывшее о реальной цели, для которой все делалось. Именно здесь очень полезен логический анализ, позволяющий быстро вскрывать глубинные корни недостатков в формализации и выявлять неадекватность патентованных и широко рекламируемых средств.
вверх^
к полной версии
понравилось!
в evernote