• Авторизация


Число 2009 12-01-2009 17:16 к комментариям - к полной версии - понравилось!


Традиционно в заданиях математических олимпиад некоторым образом фигурирует год её проведения. Так что в скором времени следует ожидать задач, затрагивающих число 2009. Вот список некоторых свойств этого числа:

• Число 2009 раскладывается на простые множители следующим образом: [показать]
• Следовательно, число 2009 можно представить в виде разности квадратов целых чисел тремя способами:
[показать]
• А в виде суммы квадратов число представляется единственным образом:
[показать]
• Чтобы получить число 2009 в виде суммы кубов, потребуется минимум 4 слагаемых, и сделать это можно тремя способами:
[показать]
• Как сумму треугольных чисел (имеющих вид [показать]) число 2009 можно представить 11-ю способами:
[показать]
• А в виде разности треугольных чисел число 2009 можно представить 6-ю способами:
[показать]
• 2009-е треугольное число равно 2 019 045
• Число 2009 входит в Пифагоровы тройки взаимно-простых чисел: (2009; 2018040; 2018041), (2009; 41160;41209), (360;2009;2041)
• Число 9002, образованное из 2009 обратной записью, также делится на 7: [показать]
• Число 2009 делится на сумму всех своих делителей, меньших корня из него: 1+7+41=49 и 2009 делится на 49
• 2009-е простое число равно 17471, это палиндром, оно одинаково читается как справа налево, так и слева направо
• Простыми также являются числа [показать], [показать], [показать], [показать], [показать], [показать]
• Рассмотрим процесс: берём натуральное число и прибавляем к нему сумму его цифр. Число 2009 в нём можно получить из самопорождённого (по Капрекару) числа 1693 за 19 шагов: 1693 - 1712 = 1693+(1+6+9+3) - 1723 = 1712+(1+7+1+2) - 1736 - 1753 - 1769 - 1792 - 1811 - 1822 - 1835 - 1852 - 1868 - 1891 - 1910 - 1921 - 1934 - 1951 - 1967 - 1990 - 2009.
• В другом процессе, рассмотренном индийским математиком Капрекаром, будем из числа, образованного цифрами четырёхзначного числа, записанными в порядке убывания, вычитать число, образованное теми же цифрами, но в порядке возрастания. К числу 6174, постоянной Капрекара, мы придём за 3 шага: К(2009) = 9200-0029=9171; К(9171) = 9711-1179=8532; К(8532) = 8532-2358=6174. К(6174) = 7641-1467=6174.
• В числе [показать] ровно 5765 цифр. Оно заканчивается пятьюстами нулями.
• Пожалуй, наиболее экзотический факт: оказывается, существует ровно 2009 5-мерных гексамино.
• Cуществует ровно 2009 Гамильтоновых графов с 8-ю вершинами. (В Гамильтоновых графах между каждыми двумя вершинами существует путь, проходящий через все остальные вершины ровно один раз)

Другие материалы для подготовки к математическим олимпиадам
вверх^ к полной версии понравилось! в evernote


Вы сейчас не можете прокомментировать это сообщение.

Дневник Число 2009 | GeneralCFR - Математика | Лента друзей GeneralCFR / Полная версия Добавить в друзья Страницы: раньше»