"серьезным был парадокс Рассела, показывавший логические опасности, скрытые в наивном понимании множества. Анализируя канторовскую теорему о так называемом “множестве — степени”, Рассел выделил понятие
“множества, которое не является элементом самого себя”.
Например, множество всех множеств не будет таким множеством, а множество натуральных чисел является множеством, не совпадающим ни с каким своим элементом.
Если мы рассмотрим множество М всех множеств, не являющихся элементами самого себя, то мы не сможем ни отрицательно, ни утвердительно ответить на вопрос: будет ли оно само множеством того же типа, что и его элементы, т.е. множеством, не содержащим самого себя в качестве элемента. Если мы ответим утвердительно, отсюда следует, что М как содержащее все множества, не являющееся собственным элементом, должно содержать и себя, что противоречит предположению.
Если же мы ответим отрицательно, т.е. М не является множеством, не содержащим себя в качестве элемента, тогда значит М содержит себя в качестве своего элемента, но все элементы М суть множества, не содержащие себя в качестве своего элемента, т.е. мы опять получаем противоречие.
На основании подобных размышлений
Рассел сформулировал определение предикативных и непредикативных свойств множеств. Только первые могут действительно определять множества; использование же вторых ведет к парадоксам. Эти наблюдения воплотились в дальнейшем в так называемую теорию типов, которую Рассел развивал совместно с Уайтхедом."
Нашла тут