На прошлой неделе, как раз перед поездкой в Великий Устюг, накрылся мой мегафотик. и в поездке пришлось снимать на чужие Canon`ы. Когда вернулись, задумался что делать со своим - в ремонт отдавать или еще чего. Когда-то все чинил сам, от утуга до телевизора. Не все удавалось починить, но больше половины точно. С годами техника все мельче и сложнее, и количество результативных попыток стало неуклонно снижаться, поэтому уже давно сломавшееся обычно выбрасывалось или отдавалось кому-то безвозвратно. А тут на фоне отсутствия денег и неудачной попытки починки электрочайника ни чинить фотик, ни покупать новый оказалось совсем не в кассу. В результате было принято мучительное решение поковыряться в нем самому. Хорошо хоть, что винтики снаружи видно, потому как с фальш-панелями у меня никогда не складывалось - пару фиксаторов постоянно отламывал нафиг. По мере разбирания/ковыряния периодически подключал батарейки, чтобы не увлечься процессом разборки окончательно.
В-общем мне повезло и полуразобранный фотоаппрат стал подавать признаки жизни.
После сборки как обычно остались лишние детали - как же без них. Но ради пары забытых шурупчиков длиной в миллиметр процесс разборки решил не повторять.
Главное, что фотоаппарат заработал.
Так как при переходе на квантовый уровень восприятияShaman_Rrrrr, пожалуй, я столько травы не выкурю.
Грибной шепот Физикам из Калифорнийского технологического института и Калифорнийского университета в Беркли впервые удалось изготовить высококачественный микрорезонатор для поверхностных плазмонов-поляритонов. Эта работа открывает новый путь для создания нанолазеров и других миниатюрных оптических устройств, встраиваемых непосредственно в чипы. Удивительный резонатор похож на гриб, шляпка которого имеет диаметр около 20 мкм и напоминает перевернутую тарелку с острыми краями. Идеально гладкая шляпка изготовлена из чистейшего кремния и сверху покрыта тонким слоем серебра; под ней проходит оптическое волокно, передающее излучение резонатора во внешний мир.или вот:[показать] Собственно резонатором является только шляпка "гриба", которая работает, используя сразу несколько любопытных физических эффектов. Вместо обычных для оптики фотонов в ней резонируют поверхностные плазмоны-поляритоны. Эти квазичастицы являются квантами совместных колебаний электромагнитного поля в кремнии и плазмы свободных электронов серебра. Плазмоны-поляритоны замечательны тем, что их волны намного короче, чем у фотонов. А именно эта характерная величина порядка микрона, существенно меньше которой невозможно сделать ни одно фотонное устройство, мешает фотонике конкурировать с традиционной электроникой. К сожалению, беда плазмонных волн в том, что из-за различных дефектов поверхности и рассеяния электронов в металле они быстро затухают. До сих пор на основе плазмонов-поляритонов не удавалось изготовить ни достаточно длинных волноводов, ни качественных резонаторов с малыми потерями. В новом резонаторе потери удалось уменьшить в тридцать раз за счет идеально гладкой поверхности и использования так называемого режима шепчущей галереи: плазмоны-поляритоны при этом движутся по кругу вблизи края шляпки. Этот удивительный эффект для звуковых волн был известен еще в древности, и его можно наблюдать в ряде знаменитых сооружений: шепот там хорошо слышен на большом расстоянии вблизи стен и совсем не слышен в зале. Добротность нового резонатора при комнатной температуре близка к теоретическому пределу, обусловленному потерями в слое серебра. Резонатор можно использовать для создания лазеров, модуляторов и других устройств, в том числе основанных на различных нелинейных эффектах. И хотя его размеры пока довольно велики, сегодня важнее демонстрация работоспособности концепции. А миниатюризацией резонатора ученые намерены заняться в ближайшее время.
Телепортация стала шире Физикам из Мэрилендского университета удалось телепортировать квантовую информацию между двумя ионами, находящимися на расстоянии метра друг от друга. Эта операция оказывается успешной с вероятностью 90% и знаменует собой важный шаг на пути к созданию новых квантовых информационных систем. Как известно, нежная и неуловимая квантовая информация обладает рядом удивительных свойств. Например, ее нельзя просто скопировать как классическую, поскольку измерение квантового кубита разрушает его квантовое состояние (то есть хранившуюся в нем информацию). Зато квантовую информацию можно телепортировать — переписать из одного кубита в другой, стирая ее в первом, так никогда и не узнав, что же в нем хранилось. Впервые эту нетривиальную процедуру удалось проделать в 1997 году для кубитов, физически реализованных в состояниях поляризации фотонов. И теперь телепортировать состояния фотонов даже на значительные расстояния уже не проблема. Но хотя квантовую информацию и удобно передавать фотонами, долго хранить ее лучше в состояниях атомов или ионов. Пять лет назад удалось впервые телепортировать закодированную в спине квантовую информацию между ионами бериллия, однако они находились в одной ловушке вблизи друг от друга.Либо мы подразумеваем разное под термином "квантовый".[показать] Теперь ученые смогли продвинуться еще дальше, телепортировав квантовое состояние одного иона редкоземельного металла иттербия другому такому же. Второй ион располагался в собственной вакуумной электромагнитной ловушке в метре от первой. Впрочем, в дальнейших экспериментах это расстояние будет нетрудно увеличить. Для телепортации ученые использовали достаточно сложную процедуру. Сначала ионы находились в основном состоянии с наименьшей энергией. Затем их возбуждали одинаковыми импульсами микроволнового излучения, загоняя в состояние суперпозиции двух квантовых уровней. После этого оба иона еще раз возбуждали пикосекундными лазерными импульсами, энергию которых ионы вскоре сбрасывали в виде единичных фотонов. Энергия или цвет этих фотонов определялись квантовыми состояниями ионов, что и позволило "вытянуть" информацию о них и передать ее на расстояние. По световодам испущенные атомами фотоны попадали в оптическую систему из полупрозрачного зеркала и фотодетекторов, которая позволила определить, что ионы находятся в запутанном состоянии. Наконец, состояние одного из них измеряли с помощью процедуры, известной как квантовая томография, и восстанавливали такое же квантовое состояние второго иона дополнительным микроволновым импульсом. Авторы считают, что этот метод может стать основой ионной квантовой памяти для пока иллюзорных квантовых компьютеров и уже существующих квантовых телекоммуникационных систем. Теперь ученые собираются повысить вероятность успеха телепортации, поместив ионы в специальные оптические ловушки, которые лучше изолированы от влияния внешней среды.