• Авторизация


В 248-мерное пространство прорвались теоретики 31-03-2007 16:28 к комментариям - к полной версии - понравилось!


[показать]Ученые из Американского института математики представили решение одной из проблем теории групп, сформулированной в 1887 году норвежским математиком Софусом Ли. Решение проблемы группы Е8, описывающей симметрию в многомерном пространстве, окажет значительное влияние на развитие математики и физики.

Международный коллектив математиков и программистов, существующий в рамках проекта "Атлас групп Ли и их представлений" (The Atlas of Lie Groups and Representations), состоял из 18 человек, которые работали над проблемой в течение 4 лет.

Общей целью коллектива является изучение представлений полупростых групп Ли над действительными и p-адическими полями. В результате работы были разработаны вычислительные алгоритмы и реализованы сложнейшие вычисления т.н. полиномов Каждана-Люстига для расщепленной группы E8, сообщает PhysOrg.

Два года ушло на понимание математических аспектов проблемы. Описывая вычислительную сложность этой работы, математики сравнивают ее с проектом "Геном человека". Информацию о генах человека можно записать в объеме 1 Гбайт, результаты же вычислений по проекту Е8 составляют 60 Гбайт.

Оптимизация алгоритмов позволила сократить объем вычислений в 1 тыс. раз, и, тем не менее, для окончательного решения потребовалось 77 часов работы суперкомпьютера Sage. Ученые в итоге составили матрицу размером 453060 х 453060.

Группа Е8 описывает симметрии в пространстве, имеющем 57 измерений. Полученное математиками представление группы насчитывает 248 измерений. Симметрия группы Е8 - важный аспект для понимания структуры элементарных частиц и строения Вселенной, возникшей в результате Большого Взрыва.

вверх^ к полной версии понравилось! в evernote


Вы сейчас не можете прокомментировать это сообщение.

Дневник В 248-мерное пространство прорвались теоретики | _Алинёнок_ - Если смотреть на мир глазами художника, можно сойти с ума... =) | Лента друзей _Алинёнок_ / Полная версия Добавить в друзья Страницы: раньше»